
EXTENDED TASK QUEUING:
ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS

MICHAEL LEBEANE
POST GRADUATE RESEARCHER, AMD RESEARCH

GRADUATE STUDENT, THE UNIVERSITY OF TEXAS AT AUSTIN
MICHAEL.LEBEANE@AMD.COM

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 20182

AUTHORS

Michael LeBeane, Brandon Potter, Abhisek Pan, Alexandru Dutu, Vinay Agarwala, Wonchan Lee, Deepak
Majeti, Bibek Ghimire, Eric Van Tassell, Samuel Wasmundt, Brad Benton, Mauricio Breternitz, Michael L. Chu,
Mithuna Thottethodi, Lizy K. John, Steven K. Reinhardt

DISCLAIMER

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,
component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to
revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES,
ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO
ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN
IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2016 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the
United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

The work described in this presentation was made with Government support awarded by the DOE. The Government may have certain rights in this work.

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 20183

ACCELERATORS EVERYWHERE!

Accelerators (especially GPUs) are everywhere in modern HPC

Over 80 of the Top 500 supercomputers use accelerators[1]

100’s of applications designed to leverage GPU compute[2]

Accelerator communication across nodes is cumbersome....

INTRODUCTION

[1] TOP500.org, “Highlights – June 2016,” http://www.top500.org/lists/2016/06/highlights, 2016.
[2] Nvidia, “GPU-Accelerated Applications,” http://www.nvidia.com/content/gpu-applications/pdf/gpu-apps-catalog-mar2015.pdf, 2016.

http://www.top500.org/lists/2016/06/highlights
http://www.nvidia.com/content/gpu-applications/pdf/gpu-apps-catalog-mar2015.pdf

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 20184

CROSS-NODE HETEROGENEITY

Current HPC GPU Communication
‒ Send data through some local interconnect (e.g., PCIe) out of an HPC NIC (e.g., InfiniBand®)

‒ Target receives data and invokes GPU driver to enqueue task

‒ Optimized variants exist (e.g., GPUDirect RDMA[3]), but still must sync with CPU driver

Can we do better???
‒ Yes! But first we need to understand two important technologies…..

INTRODUCTION

Initiator Target

CPU

CacheMemory

NIC Memory

Network

IOC
CPU

Cache Memory

NICMemory

AcceleratorIOC Accelerator

Memory Memory

[3] Mellanox, “Mellanox GPUDirect RDMA user manual,” http://www.mellanox.com/related-
docs/prod_software/Mellanox_GPUDirect_User_Manual_v1.2.pdf, 2015.

http://www.mellanox.com/related-docs/prod_software/Mellanox_GPUDirect_User_Manual_v1.2.pdf

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 20185

REMOTE DIRECT MEMORY ACCESS (RDMA)

RDMA allows for direct access of remote memory without involving CPU
‒Heavy lifting is performed on the NIC (off-load networking model)

‒Generally expressed in terms of remote Put/Get operations

Many common RDMA interfaces
‒RoCE, InfiniBand, iWARP, Portals 4, etc.

BACKGROUND

Initiator Target

Network

CPU

Cache NIC

Memory

IOC
Memory

CPU

CacheNIC

Memory

IOC
Memory

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 20186

TIGHTLY COUPLED FRAMEWORKS

Tightly Coupled Frameworks
‒Complete system architectures and interconnects

integrating CPUs, GPUs, and other accelerators

‒HSA™, OpenCAPI™, Gen-Z, CCIX, etc.

HSA[4] will be our example tightly coupled
framework for this work

Relevant Features
‒User-level, architected command queuing

‒Globally coherent memory regions

‒Shared virtual address space

BACKGROUND

MMU

CPU

Tightly Coupled Devices

Physical Memory

AcceleratorOS

Driver
IOMMU

CPU
(Producer)

Tightly Coupled Devices

Virtual
Memory

Command
Queue

Accelerator
(Consumer)

Command
Packet

[4] HSA Foundation, “HSA platform system architecture specification 1.0,” http://www.hsafoundation.com/standards, 2015.

Architected Queuing

Shared Virtual Memory

http://www.hsafoundation.com/standards

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 20187

CROSS-NODE HETEROGENEITY

Tightly-coupled accelerator frameworks
enable efficient, user-level task invocation
between devices inside a node

INTRODUCTION

By combining the intra-node tasking model of HSA with the inter-node data
movement of RDMA, we can produce a generalized, user-level tasking
framework for accelerators in distributed memory systems.

What would such a system look like?

RDMA enables efficient data movement
between devices across nodes

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 20188

CROSS-NODE HETEROGENEITY

HSA-like Solution
‒Can communicate through shared virtual address space

‒CPU must still launch tasks on target-side GPU

‒Can we do even better?

INTRODUCTION

NIC

Cache Cache

CPU

Cache

Memory

NIC

CacheCache

CPU

Cache

Memory

Accelerator Accelerator

Initiator Target

Network

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 20189

CROSS-NODE HETEROGENEITY

Our solution: Extended Task Queuing (XTQ)
‒Can communicate through shared virtual address space

‒NIC is aware of all an chip compute devices

‒NIC is an HSA device

INTRODUCTION

CacheCache

CPU

Cache

Memory

Cache Cache

CPU

Cache

Memory

XTQ NIC XTQ NICAccelerator Accelerator

Initiator Target

Network

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201810

INTRODUCING XTQ

XTQ uses an HSA-compliant, RDMA-capable NIC to provide an active
messaging[5] framework for all devices in distributed systems

XTQ reduces the launch latency for remote GPU task invocation
‒Tasks are directly scheduled on the GPU by the NIC using shared memory queues

XTQ removes the message processing on the CPU for GPU-destined tasks
‒The CPU is free to perform more useful computation

INTRODUCTION

[5] T. Eicken, D. Culler, S. Goldstein, and K. Schauser, “Active messages: A mechanism for integrated communication and
computation,” in Int. Symp. on Computer Architecture (ISCA), 1992, pp. 256–266.

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201811

OVERVIEW

XTQ NIC extends RDMA operations to access HSA task queues

On initiator, put operation is very standard
‒NIC performs local DMA read of send buffer and transfers over the network

The magic happens on the target side

XTQ ARCHITECTURE

CacheCache

CPU

Cache

Memory

Cache Cache

CPU

Cache

Memory

XTQ NIC XTQ NICAccelerator Accelerator

Initiator Target

Network

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201812

TARGET-SIDE XTQ PUT

Payload data streams into target-side receive buffer

Command descriptor is placed into HSA queue

XTQ ARCHITECTURE

CPUAccelerator

Tightly Coupled Devices

XTQ NIC

Doorbell

Payload
Data

Command Queue

Lookup

Virtual Memory

Signal

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201813

TARGET-SIDE XTQ PUT

NIC notifies the accelerator using memory-mapped doorbell

Accelerator reads command packet

XTQ ARCHITECTURE

CPUAccelerator

Tightly Coupled Devices

XTQ NIC

Doorbell

Payload
Data

Command Queue

Lookup

Virtual Memory

Signal

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201814

TARGET-SIDE XTQ PUT

Accelerator reads transferred data

Accelerator writes shared memory completion signal

XTQ ARCHITECTURE

CPUAccelerator

Tightly Coupled Devices

XTQ NIC

Doorbell

Payload
Data

Command Queue

Lookup

Virtual Memory

Signal

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201815

TARGET-SIDE XTQ PUT

CPU reads shared memory completion signal

XTQ ARCHITECTURE

CPUAccelerator

Tightly Coupled Devices

XTQ NIC

Doorbell

Payload
Data

Command Queue

Lookup

Virtual Memory

Signal

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201816

CHALLENGES

Address Translation?
‒How does initiator know about remote VAs at the target?

‒Use coordinated indices specified by the initiator

‒Lookup tables are populated by the target-side XTQ Library

XTQ ARCHITECTURE

Command Packet

Data Payload

Kernel Arguments

RDMA Header

Queue Lookup
Table

Queue Lookup Table
Base Address Register

Target PID

0xF123

Queue
Index

....

Initiator Target

෍𝑥

Unified Virtual

Memory

....

Example Queue Lookup

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201817

CHALLENGES

Flow Control? Security?
- XTQ data structures need flow control and security

- Low-level networking APIs provide mechanisms to support these features

- XTQ can adopt the policies of the transport it extends

XTQ ARCHITECTURE

Unified Virtual

Memory

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201818

XTQ RDMA EXTENSIONS

 XTQ Put is implemented as a simple extension to standard RDMA put operation
‒ Compatible with many low-level RDMA transports (e.g. InfiniBand, RoCE, Portals 4, iWARP, etc.)

 XTQ Registration API is used to provide address index-to-address translations

XTQ API

Regular RDMA Put Operation XTQ-Enhanced RDMA Put Operation

Put Command Fields

Target NID/PID

Send Buffer Ptr.

Send Buffer Length

Target Buffer Index

Transport specific metadata

Additional XTQ Fields

Remote Queue Index

Remote Function/Kernel Index

HSA-style command packet

Kernel/Function Launch Parameters

 Register Queue

‒ Queue Desc. VA

 Register Function

‒ Function Ptr. VA

‒ Target Side Buffer VA

 Register Kernel

‒ Kernel Ptr. VA

‒ Target Side Buffer VA

‒ Kernel Argument Size

‒ HSA-style completion signal VA

XTQ Rewrite Registration API

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201819

EXPERIMENTAL FRAMEWORK

All data collected in gem5[6]

‒System call emulation mode (no OS)

‒AMD GPU model[7]

‒Full Support for HSA

‒Tightly coupled system

Portals 4-based NIC model[8]

‒Low-level RDMA network programming API
currently supported by:

‒ MPICH, Open MPI, GASNet, Berkeley UPC, GNU UPC, and others

‒XTQ implemented as an extension of the Portals 4
remote Put operation

RESULTS

CPU and Memory Configuration

CPU Type 8-wide OOO, 4Ghz, 8 cores

I,D-Cache 64K, 2-way, 1 cycle

L2-Cache 2MB, 8-way, 4 cycles

L3-Cache 16MB, 16-way, 20 cycles

DRAM DDR3, 4 Channels, 800MHz

GPU Configuration

GPU Type 1 Ghz, 24 Compute Units

D-Cache 16kB, 64B line, 16-way, 4 cycles

I-Cache 32kB, 64B line, 8-way, 4 cycles

L2-Cache 768kB, 64B line, 16-way, 24 cycles

NIC Configuration

Link Speed 100ns/ 100Gbps

Network API Portals 4

Topology Star

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News, pp. 1–7, 2011.
[7] AMD. (2015) The AMD gem5 APU simulator: Modeling heterogeneous systems in gem5. http://gem5.org/GPU_Models.
[8] Sandia National Laboratories, “The Portals 4.0.2 network programming interface,” http://www.cs.sandia.gov/Portals/portals402.pdf, 2014.

http://gem5.org/GPU_Models
http://www.cs.sandia.gov/Portals/portals402.pdf

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201820

Target-side tasking control path:

CPU: CPU performs computation

HSA: GPU performs computation through CPU-side HSA Runtime

XTQ: GPU performs computation using XTQ NIC-to-accelerator tasking

SYSTEM MODELS
RESULTS

CPU HSA XTQ

NIC

Cache Cache

CPU

Cache

Memory

GPUNIC

Cache Cache

CPU

Cache

Memory

GPU NIC

Cache Cache

CPU

Cache

Memory

GPU

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201821

MICROBENCHMARKS
RESULTS

311

312

310

313

156

113

241

219

306

303

435

432

94

64

145

135

51

412

126

414

228

229

592

545

70

75

57

68

0 500 1000 1500 2000 2500

XTQ (64B)

HSA (64B)

XTQ (4KB)

HSA (4KB)

Time (ns)

CPU PtlPut NIC Initiator Put Network NIC Target Put GPU Launch GPU Kernel Execution CPU Completion

0.1

1

10

1 16 256 4,096 65,5361,048,576

S
p
ee

d
u
p

Data Items (4 Byte Integers)

CPU

HSA

XTQ

1 16 256 4K 64K 1M
0

500

1000

1500

2000

0 8 16 24 32 40 48 56 64

R
u
n

ti
m

e
(u

s)

CPU

HSA

XTQ

Nodes

Latency Decomposition

MPI Accumulate MPI Reduce MPI Allreduce

0.1

1

10

S
p
ee

d
u
p

Data Items (4 Byte Integers)

CPU

HSA

XTQ

1 16 256 4K 64K 1M

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201822

MACHINE LEARNING BENCHMARKS

Benchmarks from the Microsoft Cognitive Toolkit (CNTK)[9]

Results are projected using real runs augmented with Allreduce()
speed-up numbers from the simulator

RESULTS

0.8

1

1.2

1.4

1.6

1.8

2

AlexNet AN4 LST CIFAR Large Synth MNIST Conv MNIST Hidden

P
ro

je
ct

ed
 S

p
ee

d
u

p

CPU HSA XTQ

[9] Agarwal, et.al., An introduction to computational networks and the Computational Network Toolkit,” Microsoft, Technical Report, 2014.

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201823

SUMMARY

XTQ uses an HSA-compliant, RDMA-capable NIC to provide an active
messaging framework for all devices in distributed systems

XTQ reduces the launch latency for remote GPU task invocation
‒Tasks are directly scheduled on the GPU by the NIC using shared memory queues

XTQ removes the message processing on the CPU for GPU-destined tasks
‒The CPU is free to perform more useful computation

CONCLUSION

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201824

THANK YOU!

Michael.Lebeane@amd.com

mlebeane@utexas.edu

QUESTIONS?

mailto:Michael.Lebeane@amd.com
mailto:mlebeane@utexas.edu

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201825

REFERENCES

[1] TOP500.org, “Highlights – June 2016,” http://www.top500.org/lists/2016/06/highlights, 2016.

[2] Nvidia, “GPU-Accelerated Applications,” http://www.nvidia.com/content/gpu-applications/pdf/gpu-apps-catalog-mar2015.pdf, 2016.

[3] Mellanox, “Mellanox GPUDirect RDMA user manual,” http://www.mellanox.com/related-
docs/prod_software/Mellanox_GPUDirect_User_Manual_v1.2.pdf, 2015.

[4] HSA Foundation, “HSA platform system architecture specification 1.0,” http://www.hsafoundation.com/standards, 2015.

[5] T. Eicken, D. Culler, S. Goldstein, and K. Schauser, “Active messages: A mechanism for integrated communication and computation,” in Int.
Symp. on Computer Architecture (ISCA), 1992, pp. 256–266.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M.
Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News, pp. 1–7, 2011.

[7] AMD. (2015) The AMD gem5 APU simulator: Modeling heterogeneous systems in gem5. http://gem5.org/GPU_Models.

[8] Sandia National Laboratories, “The Portals 4.0.2 network programming interface,” http://www.cs.sandia.gov/Portals/portals402.pdf, 2014.

[9] A. Agarwal, E. Akchurin, C. Basoglu, G. Chen, S. Cyphers, J. Droppo, A. Eversole, B. Guenter, M. Hillebrand, T. R. Hoens, X. Huang, Z. Huang, V.
Ivanov, A. Kamenev, P. Kranen, O. Kuchaiev, W. Manousek, A. May, B. Mitra, O. Nano, G. Navarro, A. Orlov, H. Parthasarathi, B. Peng, M.
Radmilac, A. Reznichenko, F. Seide, M. L. Seltzer, M. Slaney, A. Stolcke, H. Wang, Y. Wang, K. Yao, D. Yu, Y. Zhang, and G. Zweig, An introduction
to computational networks and the Computational Network Toolkit,” Microsoft, Technical Report, 2014.

http://www.top500.org/lists/2016/06/highlights
http://www.nvidia.com/content/gpu-applications/pdf/gpu-apps-catalog-mar2015.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_GPUDirect_User_Manual_v1.2.pdf
http://www.hsafoundation.com/standards
http://gem5.org/GPU_Models
http://www.cs.sandia.gov/Portals/portals402.pdf

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201826

XTQ PORTALS EXTENSIONS
XTQ API

XtqPut(ptl_handle_md_t md_handle,

ptl_size_t local_offset,

ptl_size_t length,

ptl_handle_md_t md_handle2,

ptl_size_t local_offset2,

ptl_size_t length2,

ptl_ack_req_t ack_req,

ptl_process_t target_id,

ptl_pt_index_t pt_index,

ptl_match_bits_t match_bits,

ptl_size_t remote_offset,

void *user_ptr,

ptl_hdr_data_t hdr_data);

);

Primary operation is XtqPut

Same as regular PtlPut except:
- Two send buffers

- One for generic data

- One for XTQ command packet

XTQ Command Packet

Generic Data Buffer

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201827

XTQ PORTALS EXTENSIONS

 Three functions populate the target-side Rewrite Tables

 One of each for queues, kernels descriptors, and function descriptors

XTQ API

int XtqRegisterQueue(int id,

hsa_queue_t* q);

int XtqRegisterFunction(int id,

void *buffer_pointer,

void (*function) (uint64_t,uint64_t,uint64_t,uint64_t);

int XtqRegisterKernel(int id,

void* buffer_pointer,

int kernarg_size,

int rewrite_offset,

hsa_signal_t completion_signal,

uint64_t kernel);

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201828

SAMPLE CODE

 Initiator

// Initialize RDMA comm layer

int rank = RdmaInit();

int index = 42;

// Construct XTQ command

void *cmd = ConstructCmd(CMD_SIZE, index);

// Post initialization sync with target

ExecutionBarrier();

// Launch on remote GPU using XTQ

XtqPut(TARGET, cmd, CMD_SIZE,

payload, BUFFER_SIZE);

XTQ API

Target

// Initialize RDMA comm layer

int rank = RdmaInit();

int index = 42;

// Post receive buffer

RdmaPostBuffer(recv_buf);

// Initialize HSA CPU Runtime

TaskingInit(&signal, &kernel, &queue);

// Register Kernel/Queues

XtqRegisterKernel(signal, kernel, index);

XtqRegisterQueue(queue, index);

// Post initialization sync with initiator

ExecutionBarrier();

// Wait for GPU to complete task

SignalWait(signal);

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201829

XTQ PACKET FORMAT

XTQ command packets are HSA AQL packets
‒Currently CPU and GPU format is supported

‒Optional Fields:
‒Kernel Arguments

‒Data Payload

XTQ ARCHITECTURE

Group Seg Size

Grid Z

Private Seg Size

Data Payload

Kernel Arguments

AQL Packet

O
p

ti
o

n
al

 /
V

ar
ia

b
le

 L
en

gt
h

Kernel Object

Grid X

Kernel Argument Address

Grid Y

Reserved

Completion Signal

OR

GPU AQL Packet

Header WG X WG Y

WG Z Reserved

Dispatch

CPU AQL Packet

64 Bits

6
4

 B
ytesArgument 2

Return Address

Argument 3

Argument 0

Argument 1

Reserved

Completion Signal

Header ReservedType

Typical XTQ Message

64 Bits

...

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201830

XTQ REWRITE FUNCTIONALITY

 Initiator does not know about target side resources needed for tasking

 Several fields populated by the target-side NIC using coordinated indices specified by the initiator

 Rewrite tables are populated by the target-side XTQ Library

XTQ ARCHITECTURE

…..

Kernel Object Ptr

Kernel Arguments Ptr

Data Payload

.....

Kernel Arguments

RDMA Header

Completion Signal Ptr

Kernel Object Ptr

Kernel Arguments Ptr

Data Payload

.....

Kernel Arguments

Arg0

Arg1

Kernel Image

Target Side
Buffer

Completion Signal Ptr HSA Signal

Kernel Lookup
Table

Kernel Lookup Table
Base Address Register

Target PID

Kernel
Index

....

Initiator Target

෍𝑥

Unified Virtual

Memory

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201831

PORTALS4

 Low-level network interface designed to provide RDMA
primitives for higher level network protocols

 Software reference implementation of Portals 4 using
InfiniBand is publicly available

 Currently supported by:
‒ MPICH, Open MPI, GASNet, Berkeley UPC, GNU UPC, and others

 XTQ leverages Portals for its basic RDMA features

BACKGROUND

| EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS | AUGUST 2, 201832

ACTIVE MESSAGES

 Messages that specify computation

 Each message contains enough info to perform some action

 Message contains pointer to code

 Input data is optionally transmitted

BACKGROUND

