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ACCELERATORS EVERYWHERE!

Accelerators (especially GPUs) are everywhere in modern HPC

Over 80 of the Top 500 supercomputers use accelerators[1]

100’s of applications designed to leverage GPU compute[2]

Accelerator communication across nodes is cumbersome....

INTRODUCTION

[1] TOP500.org, “Highlights – June 2016,” http://www.top500.org/lists/2016/06/highlights, 2016.
[2] Nvidia, “GPU-Accelerated Applications,” http://www.nvidia.com/content/gpu-applications/pdf/gpu-apps-catalog-mar2015.pdf, 2016.

http://www.top500.org/lists/2016/06/highlights
http://www.nvidia.com/content/gpu-applications/pdf/gpu-apps-catalog-mar2015.pdf


|   EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS |   AUGUST 2, 20184

CROSS-NODE HETEROGENEITY

Current HPC GPU Communication
‒ Send data through some local interconnect (e.g., PCIe) out of an HPC NIC (e.g., InfiniBand®) 

‒ Target receives data and invokes GPU driver to enqueue task

‒ Optimized variants exist (e.g., GPUDirect RDMA[3]), but still must sync with CPU driver

Can we do better???
‒ Yes!  But first we need to understand two important technologies…..

INTRODUCTION
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[3] Mellanox, “Mellanox GPUDirect RDMA user manual,” http://www.mellanox.com/related-
docs/prod_software/Mellanox_GPUDirect_User_Manual_v1.2.pdf, 2015.

http://www.mellanox.com/related-docs/prod_software/Mellanox_GPUDirect_User_Manual_v1.2.pdf
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REMOTE DIRECT MEMORY ACCESS (RDMA)

RDMA allows for direct access of remote memory without involving CPU
‒Heavy lifting is performed on the NIC (off-load networking model)

‒Generally expressed in terms of remote Put/Get operations

Many common RDMA interfaces
‒RoCE, InfiniBand, iWARP, Portals 4, etc.

BACKGROUND
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TIGHTLY COUPLED FRAMEWORKS 

Tightly Coupled Frameworks
‒Complete system architectures and interconnects 

integrating CPUs, GPUs, and other accelerators

‒HSA™, OpenCAPI™, Gen-Z, CCIX, etc.

HSA[4] will be our example tightly coupled 
framework for this work

Relevant Features
‒User-level, architected command queuing

‒Globally coherent memory regions

‒Shared virtual address space

BACKGROUND
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[4] HSA Foundation, “HSA platform system architecture specification 1.0,” http://www.hsafoundation.com/standards, 2015.

Architected Queuing

Shared Virtual Memory

http://www.hsafoundation.com/standards
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CROSS-NODE HETEROGENEITY

Tightly-coupled accelerator frameworks 
enable efficient, user-level task invocation 
between devices inside a node

INTRODUCTION

By combining the intra-node tasking model of HSA with the inter-node data 
movement of RDMA, we can produce a generalized, user-level tasking 
framework for accelerators in distributed memory systems.

What would such a system look like?

RDMA enables efficient data movement 
between devices across nodes
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CROSS-NODE HETEROGENEITY

HSA-like Solution 
‒Can communicate through shared virtual address space

‒CPU must still launch tasks on target-side GPU

‒Can we do even better?

INTRODUCTION
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CROSS-NODE HETEROGENEITY

Our solution: Extended Task Queuing (XTQ)
‒Can communicate through shared virtual address space

‒NIC is aware of all an chip compute devices

‒NIC is an HSA device

INTRODUCTION
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INTRODUCING XTQ

XTQ uses an HSA-compliant, RDMA-capable NIC to provide an active 
messaging[5] framework for all devices in distributed systems

XTQ reduces the launch latency for remote GPU task invocation
‒Tasks are directly scheduled on the GPU by the NIC using shared memory queues

XTQ removes the message processing on the CPU for GPU-destined tasks
‒The CPU is free to perform more useful computation

INTRODUCTION

[5] T. Eicken, D. Culler, S. Goldstein, and K. Schauser, “Active messages: A mechanism for integrated communication and 
computation,” in Int. Symp. on Computer Architecture (ISCA), 1992, pp. 256–266.
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OVERVIEW

XTQ NIC extends RDMA operations to access HSA task queues

On initiator, put operation is very standard
‒NIC performs local DMA read of send buffer and transfers over the network

The magic happens on the target side

XTQ ARCHITECTURE
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TARGET-SIDE XTQ PUT

Payload data streams into target-side receive buffer

Command descriptor is placed into HSA queue

XTQ ARCHITECTURE
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TARGET-SIDE XTQ PUT

NIC notifies the accelerator using memory-mapped doorbell

Accelerator reads command packet

XTQ ARCHITECTURE

CPUAccelerator

Tightly Coupled Devices

XTQ NIC

Doorbell

Payload 
Data

Command Queue

Lookup

Virtual Memory

Signal



|   EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS |   AUGUST 2, 201814

TARGET-SIDE XTQ PUT

Accelerator reads transferred data

Accelerator writes shared memory completion signal

XTQ ARCHITECTURE
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TARGET-SIDE XTQ PUT

CPU reads shared memory completion signal

XTQ ARCHITECTURE
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CHALLENGES

Address Translation?
‒How does initiator know about remote VAs at the target?

‒Use coordinated indices specified by the initiator

‒Lookup tables are populated by the target-side XTQ Library

XTQ ARCHITECTURE
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CHALLENGES

Flow Control? Security?
- XTQ data structures need flow control and security

- Low-level networking APIs provide mechanisms to support these features

- XTQ can adopt the policies of the transport it extends

XTQ ARCHITECTURE

Unified Virtual

Memory
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XTQ RDMA EXTENSIONS

 XTQ Put is implemented as a simple extension to standard RDMA put operation
‒ Compatible with many low-level RDMA transports (e.g. InfiniBand, RoCE, Portals 4, iWARP, etc.)

 XTQ Registration API is used to provide address index-to-address translations

XTQ API

Regular RDMA Put Operation XTQ-Enhanced RDMA Put Operation

Put Command Fields

Target NID/PID

Send Buffer Ptr.

Send Buffer Length

Target Buffer Index

Transport specific metadata

Additional XTQ Fields

Remote Queue Index

Remote Function/Kernel Index

HSA-style command packet

Kernel/Function Launch Parameters

 Register Queue

‒ Queue Desc. VA

 Register Function

‒ Function Ptr. VA

‒ Target Side Buffer VA

 Register Kernel

‒ Kernel Ptr. VA

‒ Target Side Buffer VA

‒ Kernel Argument Size

‒ HSA-style completion signal VA

XTQ Rewrite Registration API
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EXPERIMENTAL FRAMEWORK

All data collected in gem5[6]

‒System call emulation mode (no OS)

‒AMD GPU model[7]

‒Full Support for HSA

‒Tightly coupled system

Portals 4-based NIC model[8]

‒Low-level RDMA network programming API 
currently supported by:

‒ MPICH, Open MPI, GASNet, Berkeley UPC, GNU UPC, and others

‒XTQ implemented as an extension of the Portals 4 
remote Put operation

RESULTS

CPU and Memory Configuration

CPU Type 8-wide OOO, 4Ghz, 8 cores

I,D-Cache 64K, 2-way, 1 cycle

L2-Cache 2MB, 8-way, 4 cycles

L3-Cache 16MB, 16-way, 20 cycles

DRAM DDR3, 4 Channels, 800MHz

GPU Configuration

GPU Type 1 Ghz, 24 Compute Units

D-Cache 16kB, 64B line, 16-way, 4 cycles

I-Cache 32kB, 64B line, 8-way, 4 cycles

L2-Cache 768kB, 64B line, 16-way, 24 cycles

NIC Configuration

Link Speed 100ns/ 100Gbps

Network API Portals 4

Topology Star

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, 
N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News, pp. 1–7, 2011.
[7] AMD. (2015) The AMD gem5 APU simulator: Modeling heterogeneous systems in gem5. http://gem5.org/GPU_Models.
[8] Sandia National Laboratories, “The Portals 4.0.2 network programming interface,” http://www.cs.sandia.gov/Portals/portals402.pdf, 2014.

http://gem5.org/GPU_Models
http://www.cs.sandia.gov/Portals/portals402.pdf
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Target-side tasking control path:

CPU: CPU performs computation

HSA: GPU performs computation through CPU-side HSA Runtime

XTQ: GPU performs computation using XTQ NIC-to-accelerator tasking

SYSTEM MODELS
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MICROBENCHMARKS
RESULTS
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MACHINE LEARNING BENCHMARKS

Benchmarks from the Microsoft Cognitive Toolkit (CNTK)[9]

Results are projected using real runs augmented with Allreduce() 
speed-up numbers from the simulator

RESULTS
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[9] Agarwal, et.al., An introduction to computational networks and the Computational Network Toolkit,” Microsoft, Technical Report, 2014.
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SUMMARY

XTQ uses an HSA-compliant, RDMA-capable NIC to provide an active 
messaging framework for all devices in distributed systems

XTQ reduces the launch latency for remote GPU task invocation
‒Tasks are directly scheduled on the GPU by the NIC using shared memory queues

XTQ removes the message processing on the CPU for GPU-destined tasks
‒The CPU is free to perform more useful computation

CONCLUSION
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THANK YOU!

Michael.Lebeane@amd.com

mlebeane@utexas.edu

QUESTIONS?

mailto:Michael.Lebeane@amd.com
mailto:mlebeane@utexas.edu
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XTQ PORTALS EXTENSIONS
XTQ API

XtqPut(ptl_handle_md_t md_handle,

ptl_size_t local_offset,

ptl_size_t length,

ptl_handle_md_t md_handle2,

ptl_size_t local_offset2,

ptl_size_t length2,

ptl_ack_req_t ack_req,

ptl_process_t target_id,

ptl_pt_index_t pt_index,

ptl_match_bits_t match_bits,

ptl_size_t remote_offset,

void *user_ptr,

ptl_hdr_data_t hdr_data);

);

Primary operation is XtqPut

Same as regular PtlPut except:
- Two send buffers

- One for generic data

- One for XTQ command packet

XTQ Command Packet

Generic Data Buffer
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XTQ PORTALS EXTENSIONS

 Three functions populate the target-side Rewrite Tables

 One of each for queues, kernels descriptors, and function descriptors

XTQ API

int XtqRegisterQueue(int id, 

hsa_queue_t* q);

int XtqRegisterFunction(int id, 

void *buffer_pointer,

void (*function) (uint64_t,uint64_t,uint64_t,uint64_t);

int XtqRegisterKernel(int id,

void* buffer_pointer,

int kernarg_size,

int rewrite_offset,

hsa_signal_t completion_signal,

uint64_t kernel);
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SAMPLE CODE

 Initiator

// Initialize RDMA comm layer 

int rank = RdmaInit();

int index = 42;

// Construct XTQ command

void *cmd = ConstructCmd(CMD_SIZE, index);

// Post initialization sync with target 

ExecutionBarrier();

// Launch on remote GPU using XTQ 

XtqPut(TARGET, cmd, CMD_SIZE,

payload, BUFFER_SIZE);

XTQ API

Target

// Initialize RDMA comm layer

int rank = RdmaInit();

int index = 42;

// Post receive buffer

RdmaPostBuffer(recv_buf);

// Initialize HSA CPU Runtime

TaskingInit(&signal, &kernel, &queue);

// Register Kernel/Queues 

XtqRegisterKernel(signal, kernel, index);

XtqRegisterQueue(queue, index);

// Post initialization sync with initiator

ExecutionBarrier();

// Wait for GPU to complete task

SignalWait(signal);



|   EXTENDED TASK QUEUING: ACTIVE MESSAGES FOR HETEROGENEOUS SYSTEMS |   AUGUST 2, 201829

XTQ PACKET FORMAT

XTQ command packets are HSA AQL packets
‒Currently CPU and GPU format is supported

‒Optional Fields:
‒Kernel Arguments

‒Data Payload

XTQ ARCHITECTURE
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XTQ REWRITE FUNCTIONALITY

 Initiator does not know about target side resources needed for tasking

 Several fields populated by the target-side NIC using coordinated indices specified by the initiator

 Rewrite tables are populated by the target-side XTQ Library

XTQ ARCHITECTURE

…..

Kernel Object Ptr

Kernel Arguments Ptr

Data Payload

.....

Kernel Arguments

RDMA Header .....

Completion Signal Ptr

Kernel Object Ptr

Kernel Arguments Ptr
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Kernel Arguments

Arg0

Arg1

Kernel Image

Target Side 
Buffer

Completion Signal Ptr HSA Signal

Kernel Lookup
Table

Kernel Lookup Table
Base Address Register

Target PID

Kernel 
Index ....

.... ....

Initiator Target

෍𝑥

Unified Virtual

Memory
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PORTALS4

 Low-level network interface designed to provide RDMA 
primitives for higher level network protocols

 Software reference implementation of Portals 4 using 
InfiniBand is publicly available

 Currently supported by:
‒ MPICH, Open MPI, GASNet, Berkeley UPC, GNU UPC, and others

 XTQ leverages Portals for its basic RDMA features

BACKGROUND
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ACTIVE MESSAGES

 Messages that specify computation

 Each message contains enough info to perform some action

 Message contains pointer to code

 Input data is optionally transmitted

BACKGROUND


