WattWatcher: Fine-Grained Power Estimation on
Live Multicore Systems Using Configurable Models

Michael LeBeane*, Jee Ho Ryoof, Reena Pandaf, and Lizy K. John®
Department of Electrical and Computer Engineering, The University of Texas at Austin
Email: *mlebeane @utexas.edu, Tjr45842@utexas.edu, ireena.panda@utexas.edu R §ljohn@ece.utexas.edu

Abstract—Power is a first-order design constraint in any
modern computing platform. Extensive research has focused
on estimating power to guide advances in power management
schemes, thermal hot spots, and voltage noise. However, most
power estimation tools possess drawbacks related to the level of
detail and amount of training needed for reliable results. This
paper introduces WattWatcher, a power measurement framework
that provides fine-grained power traces by passing predefined
performance counters and a hardware descriptor file into config-
urable back-end power models. We show that WattWatcher has
a mean absolute percentage error of 2.67% aggregated over all
benchmarks when compared to measured power consumption on
SPEC CPU 2006 and PARSEC benchmarks across three different
machines.

I. INTRODUCTION

Estimating the power and energy consumption of pro-
cessors, either at runtime or offline, is a critical concern in
modern machines. Currently, coarse grained measurements
can be obtained through hardware power counters [1] [2] or
external probes [3]. While processor wide power metering
may be useful for high level policies, such aggregate studies
mask important internal power consumption trends. Figure 1(a)
illustrates a common scenario where individual core power
consumption trends drastically differ from the power consump-
tion of the entire processor. Isolating and understanding the
trends in individual core power consumption is critical for
researching and applying per core DVFS, power capping, and
power gating techniques. Even core level power estimates,
however, may prove insufficient for certain areas of active
research. Figure 1(b) illustrates how functional unit power
consumption can vary drastically over the course of program
execution. Measuring the power consumption of the internal
components of a core is critical for studies in thermal analysis
and voltage noise.

Some curve fitting solutions [4][S][6][1] can overcome
the granularity limitations inherent in coarse grained power
probes, but require extensive training on numerous targeted
microbenchmarks, limiting their deployability. These solutions
are also extremely sensitive to the coverage of the training set,
and fail when exposed to trends that they have not yet encoun-
tered. In this paper, we present WattWatcher, a methodology
and accompanying tool-kit that uses detailed configurable
models from the computer architecture simulation domain
and adapts them for power modeling on real live multicore
systems. WattWatcher works by collecting performance events
from the system under test (SUT) and passing them through
easily customizable power models. Our work offers several
contributions over the prior art, and carves out a unique and
important spot in available power estimation methodologies:

e WattWatcher can model a variety of different proces-
sors with its extensible configuration interface. The

== Sample Points ===y

4
=}
=N
Watts

\/

Core 0
W Time

Watts

M

Time

(a) Per Core Power Breakdown (b) Functional Unit Power Breakdown

Fig. 1. TIllustration of important fine-grained monitoring features provided
by WattWatcher.
statistics collected by WattWatcher are generic enough
to apply to most modern processors in a variety of
form factors. Researchers and vendors can add other
processors to our tool by mapping these machines to
the WattWatcher interface.

e WattWatcher’s power models do not require significant
training. Most curve fitting models require an exten-
sive amount of training over a wide enough sample
space to cover all possible program types that will be
run in the future. WattWatcher specifically models all
of the major functional units in a microprocessor by
querying the SUT for its hardware configuration.

e WattWatcher offers power breakdowns at the individ-
ual core and functional unit granularity. This supports
advanced research that requires a much finer level
component breakdown than is available from coarse
grained monitoring tools.

This paper is organized into several sections that present the
WattWatcher methodology and toolkit. Section II explains the
design of WattWatcher. Section III evaluates how WattWatcher
performs on three different processors. Finally, section IV
concludes the paper.

II. WATTWATCHER: OVERVIEW AND OPERATION

In this paper we introduce WattWatcher, a tool that mea-
sures performance events in live systems and manipulates them
to drive detailed configurable power models. WattWatcher es-
timates structure and functional unit access patterns to produce
input traces suitable for power and timing models traditionally
associated with cycle accurate simulation. By calling into
the back-end power model at a much larger time granularity
than traditional cycle accurate simulators, we can utilize these
power models in a realtime environment.

There are a number of configurable power simulators that
could serve as the backend for WattWatcher [7][8][9]. For the

TABLE 1. GENERIC HARDWARE EVENTS COLLECTED BY

WATTWATCHER.

Category Hardware Events
Core/Kernel cycles, instructions, uops, migrations
Frontend branches, mispredictions, IC/iTLB misses

LS L1/L2/LLC misses, LLC/dTLB misses
Execution FP scalar, FP packed

specific embodiment of the tool presented in this paper, we
have chosen to implement WattWatcher around McPAT [8],
due to its frequent updates, verification, and popularity within
the computer architecture community. The following sections
describe how WattWatcher integrates real hardware informa-
tion into the back-end model and the layout of the tool.

A. Modeling

Since most configurable architectural power models are
originally designed for simulation environments, they require
a large number of input statistics representing precise events
inside the microarchitecture. However, researchers have noted
a tight correlation between power consumption and only a
few important hardware events that are exposed as perfor-
mance counters [4]. WattWatcher leverages this knowledge
by monitoring only the generally available counters shown in
Table I, deriving the inputs to the power model either directly
from these counters, or by making reasonable estimations and
transformations. A few simple examples are illustrated in the
following paragraphs.

000 Engine and Instruction Fetch: These structures include
the reorder buffer, instruction window, and reservation stations.
Accesses to these data structures are estimated directly based
on the instructions (either RISC instructions or x86 micro ops)
issued and retired.

Register File Accesses: Register file access are estimated
based on the number and type of instructions issued. For
example, we assume that integer instructions will perform on
average two reads to the integer register file, and one write.
Similarly for floating point, where the width of the read and the
number of instructions is determined by characteristics of the
instruction (single vs. double precision and packed vs. scalar).

Memory Hierarchy Accesses: Most memory hierarchy statis-
tics are collected directly from the processor counters. Load
and store queue activity is based on the L1 D-cache statistics.
Raw number of access to a level of the memory hierarchy are
estimated based on the number of misses in the level directly
above it. Prefetches are counted separately.

Although WattWatcher focuses on modeling fine-grained
functional unit power variations, it can also model states
exposed through ACPI. Performance states (P-states) can be
modeled by feeding operating voltage and frequency into
the configurable back-end power model. For measuring only
dynamic power, WattWatcher will work correctly out of the
box. Modeling leakage during processor states (C-states) is
challenging, however, since the unique combination of when
and where to gate certain components is vendor dependent
and not generally available to the public. This is further
exacerbated by McPAT’s inaccurate modeling of leakage in
devices using modern manufacturing technologies [10]. For-
tunately, processor leakage is relatively constant during each
operating processor state and can be accommodated for in
one of two ways. First, WattWatcher can be calibrated by
measuring leakage power using a coarse grained measurement
tool, such as RAPL or hardware probes, at each available

Counter Hardware | SUT Hardware Processor | Anglyzer
Descriptor Events Events Descriptor

Power

j A l zig: D Analysi&

l ==z ! i
T WattWatcher
WattWatcher Network Analyzer

& Collector Connection $

Q Input Formatter

Operating HW Event
System Interface
U Output Formatter
Admin \
B - [e
m Controller

Fig. 2.

processor state. WattWatcher will use this information along
with statistics it gathers on core C-state transfers to factor
in the correct leakage power. Secondly, if no coarse grained
measurement tool is available, the datasheet for the processor
can be consulted for ideal numbers regarding power dissipation
in different C-states.

Overview of the WattWatcher toolchain.

B. Tool Overview

WattWatcher is a toolkit that integrates a number of Linux
utilities and McPAT together with configurable system models
and functional unit estimators. The toolkit is divided up into
three components: the Controller, Analyzer, and Collector.
These three elements work together and interact with each
other to comprise the full WattWatcher toolkit. A description
of how these elements operate together in a common workflow
is presented in Figure 2 and is described in the following
paragraphs in detail.

Controller: All user interaction with the WattWatcher system
is initiated via the Controller module. The user passes a
number of parameters to the Controller at startup, such as the
location (hostname) of the SUT(s) and the counter descriptor
file containing the umask and event numbers. The WattWatcher
Controller opens a connection to the SUT(s) and queries it to
gather high level statistics on microarchitectural features such
as cache layout, number of CPUs, and core frequency. These
statistics are used to populate an XML file that represents the
machine configuration in McPAT. Functional unit information
is estimated from a pre-populated table of common system
configurations. This information can also be overridden by
a user’s custom configuration file, in the event that auto-
matic discovery is insufficient, or the microarchitecture is
very unconventional. The Controller then stores the system
configuration for later use and proceeds to launch the Collector
with the counter descriptor and machine configuration.

Collector: The Collector is in charge of gathering runtime
statistics on the SUT. Towards this end, the Collector uses
the popular Linux performance monitoring tool, perf [11].
Perf logs hardware performance counter information at a user
defined sampling rate. The counter descriptor file provided by
the Controller determines exactly which hardware events to
collect, and how to classify them. For live analysis mode, the
Collector constantly pipes the data to the Analyzer for imme-
diate processing. For off-line analysis, the data is buffered on
the Collector node and sent in bulk at the end of a run.

Analyzer: The Analyzer is the main module of the
WattWatcher toolchain. It is responsible for turning the raw
data transferred by the Collector into power estimates for the

18 30 18 30 18 30
17 MAPE:1.51 17 MAPE: 4.62 ’s 7 MAPE: 0.32)
" p=0930 | 25 16 p=0982 16 p=0.995 5
20 &
3 15 4
;
1 5 0=
10 et A) ()
TENNASTIRRTRESRRECES
(a) mcf from SPECint (b) xalancbmk from SPECint (c) bwaves from SPECfp
18 30 22 30 30 30
17 MAPE: 2.41 WattWatcher . MAPE: 1.82 - MAPE: 4.08
p=0.978 20 i p=0.998 25 s | 1 p=0.959 235
i 18 | 20 H 20 u:J
-§ T e L A 15 20 15 2
=]
14 P 10 s 10 8
-—‘moml\-—‘moml\—movml\—mom 10 N N N T N T 0 10 N N N T N T N 0
NI oI O ISR RaNgRRD 1 6 11 16 21 26 31 36 41 46 51 56 61 66 1 6 111621 26 31 36 41 46 51 56 61 66 71 76
(d) dealll from SPECfp (e) canneal from PARSEC (f) facesim from PARSEC
Fig. 3. Comparison of WattWatcher to RAPL power counters. The x-axis is the runtime of the benchmark in seconds.
TABLE II. SUTS USED TO EVALUATE THE PROPOSED METHODOLOGY. TABLE III. ERROR ACROSS SUTs (MAE/RMSE/MAPE).
Alias Model Form Factor TDP SPECint SPECfp PARSEC TOTAL
SUTO _ TIntel i7 2720QM __ Laptop 32nm) 45W SUTO _ 0.39/0.42/278 _ 0.25/0.29/1.75 _ 1.09/1.26/5.65 _ 0.47/0.55/2.85
SUTL _ Intel i7 4700QM Laptop (22nm) 4TW SUTI 0.41/0.45251 0.36/0.39/2.10 0.85/0.96/481 0.51/0.57/2.97
SUT2 AMD A10-6800K Desktop (32nm) 100W SUT2 1.31/1.64/1.68 1.62/2.13/2.06 2.17/2.83/2.84 1.69/2.19/2.18

SUT. It first takes the raw data format output by the collector
and parses it into McPAT compatible format. The raw data
is combined with the system configuration obtained by the
Controller to produce an XML file that represents the topology
and runtime behavior of the SUT. This information can then
be passed directly into McPAT for real time data reporting, or
archived for offline analysis. Any missing input parameters to
MCcPAT are estimated from the provided statistics. The results
of a McPAT run are then output to the directory specified by the
user in an easy-to-parse comma separated values (csv) format.

The setup in Figure 2 is simply one example of how
WattWatcher can be configured to monitor power on a target
system. One can also run the Analyzer and Controller on
the SUT, or the Controller and Analyzer can be configured
to monitor more than one system on a cluster consisting of
homogeneous or heterogeneous machines.

III. VALIDATION

In this section, we validate WattWatcher on processors
from three different vendors, form factors, and manufacturing
technologies as illustrated in Table II. For our studies, we use
the SPEC CPU2006 [12] and PARSEC [13] benchmark suites.
SPEC is an industry standard single-threaded performance
benchmarking toolkit, and PARSEC is a research benchmark
suite for multicore systems. For all benchmarks, we use the
largest input size available to guarantee a runtime in excess of
several minutes on our fastest machines.

During validation, we do not allow frequency or voltage
modulation, as we would like to show that our tool captures
small variations in power related to functional unit activity,
not coarse grained power management decisions. We do allow
C-states that do not change operating frequency or voltage
to avoid no-op loops and polling on idle threads. We cali-
brate leakage power for all processor states as described in
section II-A. All references to hardware measured power will

refer to the appropriate power monitoring counters in AMD
(APM) and Intel (RAPL) machines.

A. Time Variant Analysis

We now illustrate how WattWatcher correctly measures
total power over time when compared to RAPL counters
on SUTO. All data was sampled once every second, over
the complete execution of the program and is presented in
Figure 3. The total power contribution of each individual core
has been added to equal total processor power consumption.
We aggregate across all cores since the RAPL does not allow
for finer grained breakdowns.

Starting from the top left and moving clockwise, Figure 3
shows mcf, xalancbmk, bwaves, dealll, canneal, and facesim.
There are two benchmarks represented from each of SPECint,
SPECfp, and PARSEC. Results are reported in three ways: in-
stantaneous error, MAPE (mean absolute percentage error) and
Pearson’s correlation coefficient. Instantaneous error represents
the absolute value of the error at each sample point and MAPE
is simply the sum of the residuals presented as a percentage of
RAPL power. Pearson’s correlation coefficient indicates how
well WattWatcher tracks RAPL, with 1 indicating a perfect
correlation, and 0 indicating no correlation.

WattWatcher correlates with RAPL counters extremely
well, with all correlation coefficients greater than 0.9.
Figure 3(c) in particular is almost perfectly captured by
WattWatcher. From the other figures, we can see that there
are two primary sources of error in WattWatcher estimation.
The first involves WattWatcher under/over estimating the entire
workload by a small constant value. This is illustrated by
the sources of error in Figures 3(b), 3(e), and 3(d). The
second source of error springs from rapid changes in power.
While the upwards and downward trends are almost always
captured correctly, the raw magnitude of power spikes is
occasionally incorrect. This can be seen most clearly in Fig-
ures 3(f) and 3(a). Despite these small inaccuracies, however,

MAE/RMSE (Watts)

MAPE (Percentage)

5 & . N . & < > oy . X
S 50@" Q\«& S &é&é@@n”& \\\é“%g"&&é &@*{&&,/ SN v&\\g’ 6‘“’& 6\&\0&1@@\\\0\\"'_\&4"“@6‘ && &S &Q«Q &@a‘éj& ¢ '&1@ & & \‘Qa*vo\c%\ = o8 @&@&_ &%@‘\éi?‘é&
R TP FF T FRFTOR Y TP T L TE N T SO @SSP R P& & T &
R TS E AT T S et et T Tl T T T &
€ : o S
S o 2l

Fig. 4. This figure illustrates the error for each workload when compared to hardware power measurements.

WattWatcher trends very well and the total error for these
workloads is less than 5%.

B. Aggregate Analysis

Figure 4 illustrates the accuracy of WattWatcher summed
over the duration of each program execution on SUTO. The
results are presented as MAE (mean absolute error), RMSE
(root mean squared error), and MAPE (mean absolute percent-
age error). For the SPECint workloads WattWatcher achieves
a MAE of 0.39 W, RMSE of 0.42 W, and MAPE of 2.78%.
SPECfp workloads exhibit slightly better accuracy due to their
repetitive and periodic nature, with a MAE of 0.25 W, RMSE
of 0.29 W, and MAPE 1.75%. PARSEC workloads exhibit a
very different power profile than their counterparts in SPECint
and SPECfp. These workloads are highly multithreaded, and
display a great deal of variance when compared with the sin-
gle threaded workloads, and within themselves. WattWatcher
achieves a MAE of 1.09 W, RMSE of 1.26 W, and MAPE of
5.65% for the multithreaded PARSEC workloads. PARSEC’s
error is generally higher than SPEC’s due to the presence of
multiple active cores. For SPEC, only one of the cores is active
at a time, and the other three cores only use leakage power,
which is much easier to estimate. Overall, the MAPE across
all workloads on this SUT is 2.85%.

We have also verified WattWatcher over two other SUTs,
but only perform a deep dive into SUTO due to space con-
straints. Table III shows the total MAPE of WattWatcher over
the three SUTs that we tested. The two Intel machines (SUTO
and SUTI) both display similar trends in accuracy across
the three categories of programs. The AMD machine (SUT2)
displayed less application dependent variations in power than
the other two machines, resulting in similar error rates among
the programs. We anticipate that this is primarily due to the
differences in form factor (laptop vs desktop) rather than an
intrinsic difference in the vendors themselves.

We cannot verify the functional unit power consumption
in our evaluation, due to the difficulty of measuring real
hardware power for the individual functional units in isolation.
While it is true that an over-estimation in one component and
an under-estimation in another could lead to correct overall
trends, we believe that our consistent high accuracy against
the RAPL counters minimizes this possibility. Furthermore,
our underlying power model, McPAT, has been validated for
accuracy at the functional unit level against several RTL
models of real hardware in the prior work [8][10].

IV. CONCLUSION
Understanding power consumption is a critical concern in
any modern computing platform. Towards this end, we have
developed the WattWatcher methodology and framework for
fine-grained power estimation on multicore processors. Our
framework estimates power by passing predefined performance

counters and a hardware descriptor file into the research stan-
dard multicore power model, McPAT. Since McPAT explicitly
models each component and functional unit of a modern
multicore processor, WattWatcher does not require training
like curve fitting power models, and can offer the user a
complete breakdown at the functional unit level. WattWatcher
is capable of automatically reading the system configuration
from a host machine to calibrate the power estimation tool, and
can successfully sample power at a minimal sampling period
of 100 ms with minimal overhead. We show that WattWatcher
has a MAPE of 2.67% of measured power consumption when
compared to hardware power on SPEC CPU 2006 and PAR-
SEC benchmarks aggregated across three different machines
of differing vendors, form factors, and manufacturing process.
Through the use of this methodology, it is possible to obtain
a detailed power breakdown on real hardware without vendor
proprietary models or hardware instrumentation.
REFERENCES

[1] R. Joseph and M. Martonosi, “Run-time power estimation in high
performance microprocessors,” in ISLPED, 2001, pp. 135-140.

[2] “AMD BIOS and Kernel Developer’s Guide for AMD family 15h
Models 00h-OFh Processors,” http://support.amd.com/TechDocs/.

[3] R. Ge et al., “Powerpack: Energy profiling and analysis of high-
performance systems and applications,” IEEE Transactions on Parallel
and Distributed Systems, vol. 21, no. 5, pp. 658-671, May 2010.

[4] W. Bircher and L. John, “Complete system power estimation: A trickle-
down approach based on performance events,” in ISPASS, April 2007,
pp. 158-168.

[S] S. Gurumurthi et al., “Using complete machine simulation for software
power estimation: The softwatt approach,” in HPCA, 2002, pp. 141-.

[6] C. Isci and M. Martonosi, “Runtime power monitoring in high-end
processors: methodology and empirical data,” in MICRO, Dec 2003,
pp. 93-104.

[7] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in ISCA, June
2000, pp. 83-94.

[8] S. Li et al, “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO, Dec
2009, pp. 469-480.

[9] D. Brooks et al., “Power-performance modeling and tradeoff analysis
for a high end microprocessor,” in Power-Aware Computer Systems,
2001, pp. 126-136.

S. Xi et al., “Quantifying sources of error in mcpat and their potential
impacts on architectural studies,” in HPCA. IEEE Computer Society,
2015.

“perf: Linux profiling
https://perf.wiki.kernel.org/.
J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1-17, Sep 2006.

C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[10]

[11] with performance counters,”

[12]

[13]

