
Data Partitioning Strategies for Graph Workloads on
Heterogeneous Clusters

Michael LeBeane
mlebeane@utexas.edu

Shuang Song
songshuang1990@utexas.edu

Reena Panda
reena.panda@utexas.edu

Jee Ho Ryoo
jr45842@utexas.edu

Lizy K. John
ljohn@ece.utexas.edu

Department of Electrical and Computer Engineering
The University of Texas at Austin

ABSTRACT
Large scale graph analytics are an important class of prob-
lem in the modern data center. However, while data cen-
ters are trending towards a large number of heterogeneous
processing nodes, graph analytics frameworks still operate
under the assumption of uniform compute resources. In this
paper, we develop heterogeneity-aware data ingress strate-
gies for graph analytics workloads using the popular Power-
Graph framework. We illustrate how simple estimates of rel-
ative node computational throughput can guide heterogeneity-
aware data partitioning algorithms to provide balanced graph
cutting decisions. Our work enhances five online data ingress
strategies from a variety of sources to optimize application
execution for throughput differences in heterogeneous data
centers. The proposed partitioning algorithms improve the
runtime of several popular machine learning and data mining
applications by as much as a 65% and on average by 32% as
compared to the default, balanced partitioning approaches.

CCS Concepts
•Computer systems organization → Cloud comput-
ing; Heterogeneous (hybrid) systems; •Information
systems → Data layout; •Computing methodologies
→ Distributed programming languages; •Mathematics of
computing → Graph algorithms;

Keywords
Data Partitioning, Graph Algorithms, Heterogeneous, Data
Center, Cloud Computing

1. INTRODUCTION
Large multi-node graph processing is an increasingly im-

portant computational problem, spurred on by the popular-
ity of cloud and big data computing. The ever reducing price

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC ’15, November 15-20, 2015, Austin, TX, USA
c© 2015 ACM. ISBN 978-1-4503-3723-6/15/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2807591.2807632

Communication

Compute
Communication

Fast
Node Data

Data
Slow
Node

Barrier

Idle Compute

Communication

Compute
Communication

Time

IdleCompute

(a) Even data split on heterogeneous nodes

Time

Compute

Communication

Fast
Node Data

Data

Barrier

Slow
Node

Compute
Communication

Compute

Communication

Compute
Communication

Runtime
Improvement

(b) Heterogeneity-aware data partitioning

Figure 1: Figure 1a illustrates a computational imbalance
due to homogeneous data placement in a heterogeneous data
center. The fast node is waiting at a barrier for a slower
straggler node to finish computing. Figure 1b places data
in accordance with a node’s processing ability, optimizing
CPU utilization and improving runtime.

of storage has enabled servers and data farms to collect and
retain massive data sets, much of which can be expressed
as graphs. As such, researchers have developed many com-
putational frameworks to address the specific needs of dis-
tributed graph algorithms, such as GraphLab [24], Pow-
erGraph [13], Pregel [25], and Giraph [7]. These domain
specific programming frameworks handle a large amount of
functionality common to all graph algorithms behind the
scenes, expressing an easy and tractable abstraction to the
application programmer.

Programming frameworks, however, are not the only change
induced by big data and cloud computing. To cheaply pro-
vide scale-out performance to users, data centers are evolv-
ing from expensive enterprise servers to networks of off-the-
shelf commodity parts. This trend has opened the door to
data centers populated with heterogenous compute units for
a variety of economic and performance related reasons. For
example, many data centers with commodity components
will upgrade in a piecemeal fashion according to their needs,
leaving a variety of compute units available. Heterogeneity
can also be deliberately introduced to service the needs of
different types of workloads. Most data centers serve the

File 1 File 2 File N

Loading Files

Partitioning
Graph

Finalizing Graph

App Execution

DataData Data Data

Baseline
Partitioner

Heterogeneity
Aware Partitioner

Relative
Throughput

1 2

Graph

Node 1 Node 2 Node 3 Node n

Figure 2: Overview of the heterogeneous static partition-
ing approach. Our approach modifies several popular data
ingress partitioning strategies to accommodate for relative
compute throughput differences in heterogeneous data cen-
ters.

needs of a variety of users and clients, and will provide differ-
ent system configurations to target various performance and
power points [9][12]. Virtualized environments (e.g. Ama-
zon EC2 [1]) can also impose heterogeneity by partition-
ing clusters of homogeneous machines into a variety of con-
figurations. Such partitionings of otherwise homogeneous
machines resemble actual physical heterogeneous clusters.
Virtualization also inadvertently introduces heterogeneous
performance due to shared multi-tenancy nodes. Finally,
heterogeneity can be introduced by means of attaching ac-
celerators (e.g. GPGPUs or Intel Phi [4] accelerators) to
existing CPU clusters, although dedicated accelerators are
beyond the scope of the current work.

Despite the ever growing prevalence of heterogeneous clus-
ters, most graph analytics frameworks (and most big data
frameworks in general) operate under the assumption that
all compute nodes are balanced in performance. This as-
sumption leads to an imbalance of work distribution, causing
some fast nodes to finish processing their chunk of the data
sooner than slow nodes. The slow “stragglers” [31] decrease
the overall cluster throughput whenever synchronization is
required, as shown in Figure 1a. For graph analytics appli-
cations which require synchronization between iterations of
an algorithm, straggler nodes result in low average proces-
sor occupancy and huge processing inefficiencies. Our own
motivational data has shown an 8 core machine spends more
than 40% of its execution time waiting at a barrier for a 4
core processor to complete an iteration over its local graph.
While dynamic load balancing techniques may help alleviate
some of these issues, the graph analytics frameworks that we
surveyed [24][13][25] do not posses such mechanisms. Even
in frameworks which support dynamic load balancing, big
data workloads have been shown to exhibit massive load
balancing overheads that are rarely amortized over the ex-
ecution time of application programs [6]. Ideally, data par-
titioning should correctly skew the data in accordance with
the processing capability of the nodes so that all machines
reach the barrier at approximately the same time, as illus-
trated in Figure 1b.

This paper enhances several state of the art static parti-
tioning algorithms to account for the affects of heterogeneous

data centers on graph analytics. Figure 2 shows an overview
of our approach, which is implemented in the popular Pow-
erGraph [13] distributed graph processing system. We im-
plement our partitioning strategies as pluggable edge/vertex
cut methods in PowerGraph’s streaming graph partitioner.
These strategies are powered by a metric that describes the
desired data load on each node, which we call the skew fac-
tor. Our work describes a number of ways that the skew
factor of a cluster can be estimated and used to guide parti-
tioning decisions. Specifically, our contributions to the state
of the art include the following:

1. We offer a number of graph partitioning strategies to
improve data-ingress on heterogeneous clusters. Our
algorithms are extensions of several state of the art
online graph partitioning techniques from the litera-
ture [13][8][16][29]. While other research attempt to
utilize dynamic load balancing techniques to account
for data center heterogeneity [18] [27], we show that a
simple skewed partitioning performs very well without
the overheads associated with dynamic load balancing
techniques.

2. We illustrate a number of simple heterogeneity esti-
mates based on relative intranode throughput. These
estimates are used to develop the skew factor and to
guide the graph splitting decisions offered by our par-
titioning algorithms.

3. We provide an in-depth performance evaluation on het-
erogeneous clusters built from the Amazon EC2 virtu-
alized cloud environment. We compare standard on-
line data partitioning algorithms to the heterogeneity-
aware versions. The heterogeneity-aware partitioners
improve application execution time by 32% averaged
over a variety of real-world data sets and algorithms.
In addition, we illustrate how our partitioning algo-
rithms scale in a cluster of up to 48 heterogeneous
nodes of multiple configurations.

This paper is organized into several sections that present
and evaluate the heterogeneous partitioning strategies. Sec-
tion 2 overviews important background information for our
work. Section 3 explains how our algorithms modify and
enhance current homogeneous online streaming partitioners.
Section 4 evaluates how the different partitioning strategies
perform on a small heterogeneous cluster and at scale. Sec-
tion 5 surveys the related work and section 6 concludes the
paper.

2. BACKGROUND
Our work is implemented on the PowerGraph graph pro-

cessing framework. Since our paper introduces a number of
partitioning strategies for heterogenous nodes, it is impor-
tant to understand graph partitioning concepts used in most
graph analytics frameworks. This section will describe the
difference between offline vs online graph partitioning, the
gather/apply/scatter (GAS) computational model, and the
difference between edge and vertex cuts. While these expla-
nations will be framed in the context of PowerGraph, these
concepts should extend to most graph processing frame-
works.

1

22

(a) Offline partitioning

1

1

2

2
12

12
1

1

(b) Online partitioning

Figure 3: Offline vs streaming graph partitioning.

2.1 Offline vs Online Partitioning
Graphs can be partitioned using what we will refer to

as offline or online techniques. Figure 3 illustrates the dif-
ferences between offline and online graph partitioning. Of-
fline graph partitioning is the traditional best-cut problem.
These partitioning strategies typically assume a global view
of the graph and perform numerous iterations through the
entire graph structure to achieve a high quality cut that
balances the number of nodes and edges allocated to each
partition while minimizing the number of edges that cross
between partitions. A good example of a typical offline cut
algorithm is the highly popular and successful METIS [17]
algorithm. While offline cuts are generally of high quality,
they are often unsuitable for the billion edge graphs common
in big data analytics. The computational complexity of data
ingress would be extremely large and would not typically
amortize over the time of running the actual application of
interest.

Online graph cutting algorithms, however, do not gen-
erally assume global knowledge of the graph structure and
perform very few iterations through the graph. Instead, ver-
tices and edges are streamed into an algorithm which makes
an immediate decision on where to assign it. Online cuts
run quickly, but are frequently subject to low quality, highly
fragmented cuts, which can degrade the performance of the
application. More complicated online algorithms can be im-
plemented, but the gains in running the actual algorithm
of interest must outweigh the extra time added by a more
complicated partitioner.

Skewing graph partitions based on cluster heterogeneity
can be performed for both online and offline graph cuts.
Since online cuts are more popular in data analytics frame-
works and are what have been implemented in the Power-
Graph engine, the work in this paper will focus on online
partitioning algorithms.

2.2 PowerGraph Computation Model
PowerGraph employs the common “think like a vertex”

idiom by forcing users to express their algorithms in terms
of vertex programs that adhere to the gather/apply/scatter
(GAS) computational model. Logically, each vertex runs
through the three phases of a vertex program independently
of each other with barriers to enforce synchronization and
correctness. Figure 4a illustrates the GAS computational
paradigm on a set of vertices. During the gather phase of
a vertex, the PowerGraph engine performs a user defined
map/reduce operation on the edges and vertices adjacent to
a vertex v. The reduction from the gather phase is then
passed on to the apply operation, which uses the current

(a) Gather (b) Apply (c) Scatter

F(x)

1

2

3

4

1’

2’

3’

4’

5 5’

(a) GAS model

Machine X Machine Y
(a) Vertex Cut

(b) Edge Cut

Master

Ghost

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

(b) Edge/vertex cuts

Figure 4: Gather/Apply/Scatter execution model and edge
vs vertex cuts.

value in v and the reduced gather output to compute a new
value for v. Finally, the new vertex state from the apply
function is passed to the scatter stage. The scatter stage
makes the new value of v visible to neighboring vertices and
edges during the next iteration of a GAS operation. This
sequence of events is repeated until a user defined stopping
condition (usually an iteration cap or convergence criteria)
has been reached. The GAS programming model has un-
dergone a number of optimizations and has an extremely
efficient and streamlined implementation in the latest ver-
sion of PowerGraph.

To run GAS vertex programs, PowerGraph employs a
computational engine that is either synchronous or asyn-
chronous. The synchronous engine enforces strict barriers
between the steps of a vertex program. Alternatively, the
asynchronous engine allows for nodes to run out of sync, but
enforces some data consistency through fine grained-locking.
This paper exclusively uses the synchronous engine, since a
number of our test applications require the strict guarantees
of full barrier synchronization to ensure correct operation.

2.3 Edge vs Vertex Cuts
Whenever a graph is cut and split between two nodes, lo-

cal copies of the elements that were assigned to a remote
node are made. These copies, called ghosts or mirrors, are
used to synchronize changes across the network and largely
define the communication overhead of a graph processing
framework. In general, a graph partitioning algorithm has
the choice of cutting a graph according to its edges or its ver-
tices, as illustrated in Figure 4b. An edge cut assigns vertices
to partitions, and a vertex cut assigns edges to partitions.
The optimal strategy largely depends upon the graph struc-
ture. Graphs with a large number of small degree vertices
without major outliers perform better using edge cuts, since
all the edges attached to a given vertex are all owned by
the same node. However, many real-world natural graphs
follow what is known as a power-law distribution. Under a
power-law degree distribution the probability that a vertex
has degree d is given by:

P (d) ∝ d−α (1)

where the exponent α is a positive constant that controls the
skewness of the degree distribution. Essentially, small val-
ues of α lead to high graph density where a small number of
vertices have an extremely high degree. For these extremely
high degree vertices, vertex cuts are preferred in order to
improve load balance in partitions. However, vertex cuts

Table 1: Amazon c4-type virtual node configurations and skew factors.

Amazon EC2 Configuration Skew Factors

Name HW Threads Memory Network [3] Thread Based Memory Based
c4.xlarge 4 7.5GB 100 Mbps to 1.86 Gbps 1 1
c4.2xlarge 8 15GB 100 Mbps to 1.86 Gbps 3 2
c4.4xlarge 16 30GB 100 Mbps to 1.86 Gbps 7 4
c4.8xlarge 36 60GB up to 8.86Gbps 17 8

suffer from the drawback that assigning edges to partitions
can cause an excessive amount of network communication.
This overhead occurs because the edges for a given vertex
can easily be split across several nodes, requiring synchro-
nization between every GAS sub-step.

In this paper, we apply most of our heterogeneous data
skewing techniques to the baseline partitioning strategies in
PowerGraph, which perform vertex cuts exclusively. How-
ever, we also present some strategies from PowerLyra [8],
which performs both edge and vertex cuts depending on the
degree of each vertex.

3. HETEROGENEOUS PARTITIONING AL-
GORITHMS

In this section, we describe how we modified five distinct
online graph partitioning algorithms to more ideally map to
heterogenous clusters. The modifications to each partition-
ing strategy keeps the flavor and intuition that was present
in the original algorithm, while still skewing the data in ac-
cordance with the relative throughput of each node. While
the concept of skewing data partitioning for heterogeneity
can apply to any method, we choose to modify existing ap-
proaches to allow for comparison to a solid baseline. Be-
fore we present heterogeneity aware algorithms, however,
we must first have some formal method of expressing the
differences in performance between each node in the cluster.

3.1 Estimating Heterogeneity in a Cluster
The main idea in data partitioning for heterogeneous nodes

is simple: we want to divide the input data set into shards
such that each node receives an amount of data in accor-
dance with a metric. We define the desired data partition-
ing ratio between nodes to be the skew factor of the cluster.
For the purposes of this paper, the skew factor is always
written relative to other nodes, with the least powerful node
receiving the value of 1.

We have provided a few simple and tractable methods of
representing the skew factor of a heterogeneous cluster. To
ground our discussion, we will describe how the skew factor
is calculated for a number of Amazon EC2 configurations,
which we will later use for our experimental section. Table
1 shows the node configurations and the skew factor that
would be used for each approach.

Thread Based Skew Factor: For smaller data sets
where the graph can easily fit into the memory of any sin-
gle node, a reasonable proxy of performance between two
machines can be derived by looking at the relative perfor-
mance of the CPUs. For our example Amazon cluster, the
CPU type is the same, and only the number of hardware
threads assigned to each virtual node vary across configura-
tions. Therefore, we define the thread based skew factor to
estimate relative throughput differences between nodes us-

ing the number of worker threads. Table 1 shows the thread
based skew factor for our sample machines. We use the
number of logical cores reserved for computation in Power-
Graph (num logical cpus−2) to calculate relative through-
put. Two logical cores are reserved for communication and
are not used to compute the skew factor.

Memory Based Skew Factor: Many graphs are too
large to fit in the memory of a single node in the cluster.
For graphs of these types, it is critical to assign a skew fac-
tor based on the size of main memory on the nodes to avoid
page faults during processing. The PowerGraph framework
in particular is especially vulnerable to memory imbalance,
since it will not run if the entire graph and all related data
structures do not fit in main memory. We use a memory
based skew factor to allow cluster with some small mem-
ory nodes to participate in graph calculations without fac-
ing memory constraints. This memory based skew factor is
computed as the ratio of node DRAM capacities between all
of the nodes and is shown for the example EC2 cluster in
Table 1.

Profiling Based Skew Factor: In addition to these
two simple metrics, we have investigated using lightweight
profiling to develop our skew factors. A true estimate of a
node’s processing throughput is inherently tied to the char-
acteristics of the workload. Different workloads stress dif-
ferent parts of a compute node, so a machine that can pro-
cess workload A 3x faster than another machine may not
process workload B 3x faster. Therefore, we investigated a
simple profiling based skew factor that implicitly factors in
the intranode bottlenecks when processing these algorithms.
However, we found that profiling based skew factors resulted
in very similar results as the thread based skew factor and
could not justify the added complexity. We leave the devel-
opment of an efficient profiling based skew factor as future
work.

While there are certainly more complex methods of cal-
culating the skew factor, we show in Section 4 that these
rough estimates can provide large performance benefits for
the heterogeneity-aware partitioning algorithms.

3.2 Problem Formulation
Now that we have a method of calculating the skew factor

for a given cluster, we can formalize the requirements of an
online graph partitioning algorithm. We will formulate it as
a vertex cut problem, as this applies to the majority of our
algorithms, but a similar formulation and constraints can be
derived for an edge cut objective. Let E and V be the set of
all edges and vertices contained in the graph, respectively.
The problem of partitioning edges onto heterogeneous nodes
can be expressed as a n-way vertex-cut that assigns each
edge e ∈ E to a machine A(e) ∈ P where P is the set of
all machines. Each vertex then spans the set of machines
A(v) ⊆ P that contain its adjacent edges. We also formally

define Sk such that Sk(p) = skewfactor(p)
sum(skewfactor)

where the skew

factor is calculated as discussed in Section 3.1. Therefore,
Sk(p) is the relative throughput associated with machine p
expressed between [0, 1]. Formally, the vertex cut objective
can be expressed similarly to[13]:

min
A

1

|V |
∑

v∈V

|A(v)| (2)

s.t. ∀p ∈ P,abs(|{e ∈ E : A(e) = p}|−Sk(p)∗|E|) < λ (3)

where we define λ as the imbalance factor. The number
of replicas of a vertex v is defined as the |A(v)| copies of
the vertex v. Therefore, Equation 2 attempts to place edges
for a given vertex v on a small number of machines, mini-
mizing the communication and memory overhead. Equation
3, on the other hand, attempts to balance the distribution
of edges over all available machines according to the relative
throughput of each node, expressed by Sk. Any partition-
ing algorithm should strive to account for both equations to
achieve a quality n-way heterogeneous vertex cut.

3.3 Partitioning Algorithms
In this section, we illustrate how five popular streaming

graph cut algorithms from the literature [13][8][16][29] can
be modified to support optimized heterogeneous data place-
ment using the skew factor. The five streaming algorithms
contain a mix of the most commonly used streaming split
algorithms, as well as newly proposed research techniques.
The skew factor can be constructed using either the thread
or memory based approach as illustrated in Section 3.1, or
from a user defined constraint. For our explanation of the
algorithms, we will use Sk as defined in Section 3.2. Addi-
tionally, we will use and define iSk as the inverse cumulative
density function of the skew factors. Indexing into iSk with
a probability [0, 1] returns a node id based on the cumulative
density of the skew factor. The inverse cumulative density
function is trivially constructed from the skew factor or Sk.

3.3.1 Skewed Random Hash
The random streaming vertex cut (Random) was origi-

nally proposed in the PowerGraph [13] framework as a base-
line method for extremely fast partitioning. It attempts to
assign an edge to a node based on a random hash of the
source and destination vertices. Algorithm 1 describes the
formulation of Random for a heterogeneous environment.

Algorithm 1 Skewed Random Hash Cut

1: procedure SRandom
2: for e ∈ E do
3: s ← Src(e) � s is source vertex of edge e
4: d ← Dest(e) � d is destination vertex of edge e

5: p ← iSk[HashE(s,d)
maxHash

] � compute skewed hash
6: e.owner ← p � assign owning node for e
7: end for
8: end procedure

The formulation for a heterogeneous environment is quite
simple. Skewed Random is expressed as a probability and
now indexes into iSk to produce a weighted assignment of
edges to machines based on the skew factor.

3.3.2 Skewed Greedy
The greedy vertex cut algorithm (Greedy) was originally

proposed in PowerGraph [13] as an improvement over the
Random algorithm. It attempts to factor locality into the
graph partitioning decision by assigning edges to nodes based
on prior scheduling decisions at the expense of a longer par-
titioning phase. Greedy comes in two primary forms: obliv-
ious and coordinated, depending on whether the data struc-
tures are shared between machines or private. However, the
algorithm otherwise functions exactly the same in both vari-
ations. Algorithm 2 describes the formulation of Greedy for
a heterogeneous environment.

Algorithm 2 Skewed Greedy Edge Cut

1: procedure SGreedy
2: for e ∈ E do
3: s ← Src(e)
4: d ← Dest(e)
5: for p ∈ P do
6: srcPresence ← (Edges(s, p) > 0)
7: destPresence ← (Edges(d, p) > 0)
8: bal ← Balance(Sk, p)
9: score[p] ← bal+srcPresence+destPresence
10: end for
11: e.owner ← argmaxp(score)
12: end for
13: end procedure

The heterogeneous formulation of the algorithm attempts
to assign edges to nodes that already contain either the
source or the destination vertices. In the pseudocode, the
Balance() function assigns a [0− 1] score based on how the
current distribution of edges deviates from the ratio of edges
suggested by Sk[p]. Let u and v be the vertices associated
with an edge e, and let A(u) be defined as in Section 3.2.
Skewed Greedy cut uses the following modified heuristics
from [13], applied in this order:

1. If A(u) and A(v) intersect, then e should be assigned
to a machine in the intersection biased by the skew
factor.

2. If A(u) and A(v) are not empty, then e should be as-
signed to the machine containing one of the vertices
biased by the skew factor.

3. If only one of the two vertices has been assigned to a
machine, then choose a machine for e from the assigned
vertex biased by the skew factor.

4. If neither vertex has been assigned, then assign e to
the least loaded machine biased by the skew factor.

Note that since this algorithm is a heuristic, it does not
guarantee an exact balance in accordance with the skew fac-
tor, as Skewed Random does. Therefore, we have imple-
mented an optional override (not shown in the pseudocode)
which switches to a random hash-based approach if the par-
titions exceed a user defined balance threshold.

3.3.3 Skewed Grid Constrained
The grid constrained algorithm (Grid) [16] attempts to

place an upper bound on memory and network communi-
cation by constraining the amount of mirrors that can be

generated. This is accomplished by forming a matrix from
the requested number of nodes, and hashing each vertex to
an entry in the matrix. The valid list of candidates that an
edge can be assigned to is the intersection of the processors
in the rows and columns of the source and destination ver-
tex. If the number of nodes in the cluster is N , then Grid
places a 2

√
N − 1 upper bound on the replication factor.

The heterogeneous version of Grid is defined in Algorithm
3.

Algorithm 3 Skewed Grid Hash Cut

1: procedure SGrid
2: Grid ← makeGrid(P)
3: SGrid ← makeSkewedGrid(Sk,Grid)
4: for e ∈ E do
5: s ← Src(e)
6: d ← Dest(e)

7: srcSet ← SGrid[HashV (s)
maxHash

]

8: destSet ← SGrid[HashV (d)
maxHash

]
9: cand ← srcSet ∩ destSet
10: for p ∈ cand do
11: score[p] ← Balance(Sk, p)
12: end for
13: e.owner ← argmaxp(score)
14: end for
15: end procedure

Essentially, the Skewed Grid keeps the 2
√
N − 1 upper

bound of the original Grid algorithm while accounting for
heterogeneity. The matrix creation step, makeGrid, is kept
from the original Grid algorithm. However, we create a new
grid based on the old one by skewing the probability of se-
lecting shard i based on the relative weights of its rows and
columns. The candidate processor list is still formed from
the intersection of the selected shards’ rows and columns.
Finally, the owner of an edge is selected from the candi-
date processor list using the Balance() function defined for
greedy cut. Like the Skewed Greedy above, this heuristic is
vulnerable to load balancing issues depending on the graph.
We have chosen not to enforce strict load balancing con-
straints in Skewed Grid so that we can still enforce the up-
per bound of the replication factor found in the standard
grid partitioning algorithm.

3.3.4 Skewed Hybrid Cut
The Hybrid cut algorithm [8] is similar to Random with

one important difference. Hybrid attempts to perform both
vertex and edge cuts depending on the average degree of the
vertex in question. It employs a two pass approach to ac-
complish this objective. The first approach assigns all edges
to nodes based on a hash of the destination vertex, essen-
tially performing a random edge cut. More importantly,
however, the first pass allows for the easy calculation of the
total degree of each vertex. The second pass finds all the ver-
tices with an in-degree higher than a threshold and reassigns
them similarly to the random hash methodology. Algorithm
4 describes the heterogeneous variant of Hybrid.

Skewed Hybrid modifies both phases of Hybrid cut as-
signment in a similar manner as Skewed Random. Both
random hashes are modified to index into iSk to produce
a weighted assignment of edges to machines based on the
relative throughput of the nodes.

Algorithm 4 Skewed Hybrid Cut

1: procedure SHybrid
2: for e ∈ E do
3: d ← Dest(e)

4: p ← iSk[HashV (d)
maxHash

]
5: e.owner ← p
6: end for
7: for v ∈ V do
8: if inDegree(v) > Threshold then
9: for e ∈ Edges(v) do
10: s ← Src(e)

11: p ← iSk[HashV (s)
maxHash

]
12: e.owner ← p
13: end for
14: end if
15: end for
16: end procedure

3.3.5 Skewed Ginger
The Ginger cut partitioning algorithm [8] is an extension

of Hybrid cut enhanced with a locality heuristic called Fen-
nel[29]. For high degree vertices, it operates like Hybrid cut.
For low degree vertices, Ginger minimizes the expected value
of the replication factor. Let Vp represent the set of vertices
that are assigned to node p. Formally, a low-degree vertex v
is assigned to node i such that c(v, p) > c(v, j), forallj ∈ P ,
where c(v, p) is the cost function. The cost function is de-
fined as c(v, p) = |N(v) ∩ Vp| − b(p), where N(v) denotes
the set of neighboring vertices along the in-edges of v. The
first term, |N(v) ∩ Vp| represents the degree of vertex v in
the candidate partition p. The balance formula b(p) rep-
resents the marginal balancing cost of adding vertex v to
node p and is represented by a normalized factor considering
both the number of edges and vertices assigned to a node:
1
2
(|Vp| + |V |

|E| ∗ |Ep|). Algorithm 5 describes the formulation

of Ginger cut for a heterogeneous environment.

Algorithm 5 Skewed Ginger Cut

1: procedure SGinger
2: for e ∈ E do
3: d ← Dest(e)

4: p ← iSk[HashV (d)
maxHash

]
5: e.owner ← p
6: end for
7: for v ∈ V do
8: if inDegree(v) > Threshold then
9: for e ∈ Edges(v) do
10: s ← Src(e)

11: p ← iSk[HashV (s)
maxHash

]
12: e.owner ← p
13: end for
14: else
15: for p ∈ P do
16: Vp ← V erts(p)
17: cost[p] ← |N(v) ∩ Vp| − (1− Sk[p]) ∗ b(p)
18: end for
19: e.owner ← argmaxp(cost)
20: end if
21: end for
22: end procedure

Table 2: Graph and Matrix Data Sets used in evalution

Name Vertices Edges Size (Uncompressed) Type Algorithms

amazon[22] 403,394 3,387,388 46MB Directed Graph PR,CC,TC
citation[22] 3,774,768 16,518,948 268MB Directed Graph PR,CC,TC
netflix[5] NA NA 100MB Sparse Matrix ALS,SGD
road-map[22] 1,379,917 1,921,660 84MB Undirected Graph PR,CC,TC
social-network[22] 4,847,571 68,993,773 1.1GB Directed Graph PR,CC,TC
twitter[20] 41,000,000 1,400,000,000 25GB Directed Graph PR,CC,TC
wiki[22] 2,394,385 5,021,410 64MB Directed Graph PR,CC,TC

Our Skewed Ginger algorithm modifies the first pass sim-
ilarly to Skewed Hybrid by using a weighted hash on the
destination vertex to assign an edge. The second pass for
high degree vertices is also the same as Hybrid cut, using a
weighted hash on the source vertex to assign an edge. The
primary difference is for the second pass on low degree ver-
tices, which now uses a modified version of the Fennel heuris-
tic. The balance heuristic b(p) is multiplied by 1 − Sk[p]
to favor node assignments more in line with the relative
throughput of each node. Similarly to the Skewed Greedy
cut algorithm, this algorithm employs a heuristic which can
generate partitions that slightly deviate from the requested
skew factor. Therefore we allow for an optional override of
the Fennel heuristic step (not shown in the algorithm) if the
nodes become too imbalanced, changing Skewed Ginger back
into the Skewed Hybrid cut, which guarantees near perfect
load balancing.

4. EVALUATION
This section evaluates the effectiveness of our heteroge-

neous partitioning algorithms on a wide variety of data sets,
applications, and cluster configurations. For our studies we
have selected a number of different data sets of various types
as shown in Table 2. The data sets range in size from a
few million edges (amazon,road-map,wiki) to over a billion
(twitter). While most of our data sets are traditional di-
rected and undirected graphs, we also include a user ratings
matrix data set (netflix) to evaluate recommender engine
algorithms.

To accompany these data sets, we have also selected five
common applications frequently leveraged in a machine learn-
ing and data mining (MLDM) environment. These algo-
rithms are briefly described as follows:

PageRank (PR): The PageRank algorithm [26] attempts
to increase the relative rating of a node based on the weights
of all the nodes it is connected to. It’s main use is in ranking
the importance of web pages on the internet and is defined
as follows:

PR(u) =
1− d

N
+ d

∑

v∈Bu

PR(v)

L(v)
(4)

This equation states that the PageRank for a page u is de-
pendent on the PageRank values for each page v contained
in the set Bu, the set containing all the pages linking to v
divided by the number of links from page v. The damping
factor, d, reduces the impact of any one page on another
page’s rank. The total number of pages is represented by
N .

Connected Components (CC): The connected compo-
nents algorithm attempts to determine the number of com-

ponents that are connected in a graph and the number of
vertices and edges in each connected component. In Pow-
erGraph, CC is implemented as a simple label propagation
algorithm that iterates until the vertex label identifiers are
no longer changing.

Triangle Count (TC): Triangle count counts the total
number of triangles in a graph, and also counts the num-
ber of triangles associated with each vertex. For every edge
(u, v) in the graph, PowerGraph’s triangle count implemen-
tation [28] counts the number of intersections of the neighbor
set on u and the neighbor set on v. This counts every trian-
gle 3 times, so the final answer can be obtained by summing
across all the edges and dividing by 3.

Stochastic Gradient Descent (SGD): The stochastic
gradient descent algorithm [19] is a popular technique used
to optimize an objective function. In PowerGraph, it is used
to construct recommender engines by optimizing the squared
error function derived from factoring the ratings matrix rui
into pu and qi such that rui = pu ∗ qi. SGD optimizes the
squared error function by iteratively computing the predic-
tion error from an initial estimate of pu and qi, and then
modifies the parameters in the opposite direction of the gra-
dient.

Alternating Least Squares (ALS): The alternating
least squares algorithm [32] is also implemented by Power-
Graph to construct recommender engines using matrix fac-
torization using the same problem formulation as SGD. To
minimize the squared error objective function, ALS rotates
between fixing pu and qi and solving for the other matrix.
Since either pu or qi is always fixed, the problem is quadratic
and can be solved efficiently.

4.1 Fixed Cluster
In this section, we focus on evaluating the performance of

our heterogeneous partitioning algorithms on a small fixed
cluster of four heterogeneous nodes. For this study we use
one node each from c4.xlarge, c4.2xlarge, c4.4xlarge, and
c4.8xlarge. The performance characteristics of these nodes
were described previously in in Table 1. All of the nodes
are based on an Intel 2.9Ghz E5-2666 v3 processor. For
these studies, we used the thread based skew factor since
the graphs are small enough that running out of memory on
any single node is not a concern.

Figure 5 shows the runtime of each heterogeneity-aware
partitioning strategy and the unmodified version when ap-
plied to several algorithms and data sets. The height of
the bar illustrates runtime, which is broken down into the
time spent in each phase of the algorithm. These phases
are the gather/apply/scatter phases that compose the ma-
jority of graph computation, and the transmit and receive
phases, which represent the amount of time that the com-

0

10

20

30

40

50

60
R

an
do

m

G
re

ed
y

G
rid

H
yb

rid

G
in

ge
r

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid

G
in

ge
r

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid

G
in

ge
r

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid

G
in

ge
r

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid

G
in

ge
r

social network amazon citation road map wiki

R
un

tim
e

(s
)

Transmit Receive Gather Apply Scatter

SkewedBaseline

(a) Pagerank runtime

0
10
20
30
40
50
60
70
80
90

100

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid

G
in

ge
r

netflix

R
un

tim
e

(s
)

TX RX G A S

Skewed

Baseline

(b) ALS runtime

0
2
4
6
8

10
12
14
16
18

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid

G
in

ge
r

netflix

R
un

tim
e

(s
)

TX RX G A S
SkewedBaseline

(c) SGD runtime

0

10

20

30

40

50

60

0

1

2

3

4

5

6

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid
G

in
ge

r
R

an
do

m
G

re
ed

y
G

rid
H

yb
rid

G
in

ge
r

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid
G

in
ge

r
R

an
do

m
G

re
ed

y
G

rid
H

yb
rid

G
in

ge
r

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid

G
in

ge
r

social network amazon citation road map wiki
R

un
tim

e
(s

)

R
un

tim
e

(s
)

Receive Gather Apply Scatter Transmit

Skewed
Baseline

Right Axis

(d) Triangle Count runtime

0

20

40

60

80

100

120

140

160

0

2

4

6

8

10

12

14

16

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid
G

in
ge

r
R

an
do

m
G

re
ed

y
G

rid
H

yb
rid

G
in

ge
r

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid
G

in
ge

r
R

an
do

m
G

re
ed

y
G

rid
H

yb
rid

G
in

ge
r

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid

G
in

ge
r

social network amazon citation road map wiki

R
un

tim
e

(s
)

R
un

tim
e

(s
)

Receive Gather Apply Scatter Transmit

Skewed
Baseline Right Axis

(e) Connected Components runtime

Figure 5: Runtime for algorithms and data sets under skewed and non-skewed partitioning constraints. The heterogenity-aware
algorithms decrease application runtime by as much as 65%, and on average 32% when compared to the baseline partitioners.

pute threads are putting/getting data into its RX/TX buffers
for the network threads.

The PageRank algorithm illustrated in Figure 5a shows
an average improvement in runtime of 25% among all work-
loads and data sets, with the Hybrid variants demonstrating
the best performance. Note that the PageRank algorithm as
implemented in PowerGraph does not have a scatter phase
on the out-edges. ALS in Figure 5b, which performs most
of its computation in the gather stage, shows an improve-
ment of 17% over the baseline methods. The Skewed Grid
and Skewed Greedy algorithms actually performs slightly
worse for this application and data set. SGD in Figure 5c
illustrates an improvement of 39% on the netflix data set.
Triangle count, presented in Figure 5d, has an average im-
provement in runtime of 48%. Triangle count displays a
strong amount of data dependent performance, with the so-
cial network graph taking much longer than the others. So-
cial network is a power-law graph with a small number of
extremely high degree vertices, which stresses the triangle
counting algorithm. Finally, connected components (Figure
5e) shows an average improvement in runtime of 25% over
all benchmarks. The road map data set takes significantly
longer to process due to the unique nature of road topolo-
gies, which differs significantly from the other graphs. Over-
all, the skewed partitioning algorithms net an improvement
of 32% over their respective baseline across all algorithms
and data sets.

To obtain the optimal benefit from heterogeneity, it is im-
portant that the skewed partitioning strategies achieve the
desired load balance as measured or calculated in Section 3.
However, many of these strategies are heuristics and do not
guarantee a perfect data skew. Therefore it is important to
study how the choice of partitioning algorithm and data set
can affect the load balance of our cluster. Figure 6 shows the

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

SR
an

do
m

SG
re

ed
y

SG
rid

SH
yb

rid
SG

in
ge

r
SR

an
do

m
SG

re
ed

y
SG

rid
SH

yb
rid

SG
in

ge
r

SR
an

do
m

SG
re

ed
y

SG
rid

SH
yb

rid
SG

in
ge

r
SR

an
do

m
SG

re
ed

y
SG

rid
SH

yb
rid

SG
in

ge
r

SR
an

do
m

SG
re

ed
y

SG
rid

SH
yb

rid
SG

in
ge

r
N

on
-S

ke
w

Ta
rg

et
-S

ke
w

social_network amazon citation road_map wiki optimal

R
el

at
iv

e
Ed

ge
 D

is
tri

bu
tio

n

Node (1) Node (3) Node (7) Node (17)

Figure 6: Relative distribution of edges to nodes for graphs
and matrix data sets. Edge distribution defines the workload
balance for the application programs.

balance of edge distributions among different data sets and
partitioning strategies when compared to the targeted skew
factor and the original homogeneous split approaches. The
two bars on the right side of the graph illustrate the original
homogeneous load balance objective and the skewed load
balance objective. Algorithms that are based on a random
hash of the edges (such as Random and Hybrid) achieve a
near-perfect load balance of edges in accordance with the
targeted skew. Algorithms based on heuristics (such as
Greedy, Grid, and Ginger), do not perfectly achieve the tar-
get skew, but still maintain a fairly reasonable load balance.
We also see from the graph that there is not a significant
amount of dependence between the choice of data set and
the load balance, with consistent trends across all data sets.
Overall, most algorithms illustrate good adherence to the
target data skew factors.

In addition to proper load balancing, reducing the net-
work communication between the partitions is a key factor

0

0.5

1

1.5

2

2.5

3

3.5

4

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid

G
in

ge
r

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid

G
in

ge
r

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid

G
in

ge
r

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid

G
in

ge
r

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid

G
in

ge
r

social network amazon citation road map wiki

R
ep

lic
at

io
n

Fa
ct

or

SkewedBaseline

Figure 7: Replication factor for graphs and matrix data sets.
A lower replication factor decreases the amount of network
traffic and memory utilization in the cluster.

0

5

10

15

20

25

30

35

40

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid

G
in

ge
r

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid

G
in

ge
r

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid

G
in

ge
r

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid

G
in

ge
r

R
an

do
m

G
re

ed
y

G
rid

H
yb

rid

G
in

ge
r

social network amazon citation road map wiki

In
gr

es
s T

im
e

(s
)

SkewedBaseline

58

Figure 8: Overhead of the ingress partitioning techniques.
The overhead for most heterogeneity-aware algorithms is ap-
proximately 20% compared to the baseline, which will amor-
tize over the execution of most non-trivial applications.

in improving performance, especially when the algorithm
has a small computation to communication ratio. For graph
workloads, network communication overheads are directly
correlated to the number of mirrors that exist on machines
other than the master. The average number of mirrors can
be expressed as the replication factor, where a replication
factor of 1 corresponds to no communication, and a repli-
cation factor of p corresponds to an all-to-all broadcast for
every time step for each edge or vertex operation. Figure
7 shows the replication factor for each baseline algorithm
and the modified heterogeneous version over several differ-
ent data sets. Generally, Random has the highest replication
factor due to its complete disregard for locality and topology
when placing edges. Hybrid or Ginger cut is generally the
best performing on most graphs, depending on the propor-
tion of high degree vertices to low degree vertices. In regards
to the heterogeneity-aware partitioners, most strategies il-
lustrate an improvement in replication factor as compared
to the baseline. This is a fortunate side effect of skewing the
data partitioning across nodes. A large amount of skew in a
cluster pushes more data on a smaller number of nodes than
a homogeneous partitioning strategy, leading to a smaller
number of mirrors and a generally smaller replication fac-
tor. Skewed Grid does not perform appreciably better when
skewing the data set, since the primary concern of the base-
line version of Grid is ensuring an upper bound on the num-
ber of mirrors.

One final factor to consider is the amount of time it takes
to perform the partitioning step of the algorithm. Higher
quality partitions usually take more time than naive algo-
rithms. Therefore it is important to investigate the impact

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60

R
un

tim
e

(s
)

Cluster Size

Random
SRandom
Greedy
SGreedy
Grid
SGrid
Hybrid
SHybrid
Ginger
SGinger

Figure 9: Scale-out runtime of PageRank on Twitter graph.
Heterogeneity aware algorithms decrease runtime by 18% on
average.

of the heterogeneous scheduling decisions on the data ingress
phase. Figure 8 shows how data ingress is affected by het-
erogeneity across data sets. In general, Random and Grid
based partitioning schemes are the quickest, and Greedy and
Ginger are the slowest. Not counting Ginger, the heteroge-
neous algorithms increase the data ingress time over their
respective baseline by approximately 22%. Almost all of the
runtime overhead added by the heterogeneous variants arises
from the cost of computing a weighted hash. While this is
done efficiently in code, the calculation is performed at least
once for every new edge processed. The heterogeneous for-
mulation of Ginger, however, has a relatively high overhead
and increases the ingress time by 66%, due to more calls
into the weighted hash function attributed to its multi-pass
approach. While these numbers might seem high, the real
cost of data ingress must be measured with respect to the
application program. If the application program runtime is
greater than the data ingress phase, then the cost of ingress
will be amortized over the application program run, and the
benefits during application phase from the data skew ap-
proach will exceed the extra computation needed to load
the data.

4.2 Scale Out
While the previous section shows large benefits in run-

time for relatively small to medium sized graphs, the data
sets and accompanying data structures generated by Pow-
erGraph are small enough to fit within the memory of one
node. We would like to show that the benefits heteroge-
neous partitioning offers for our small test cluster continues
for large data sets and scale-out clusters. For these stud-
ies, we will be using the Twitter [20] graph from Table 2
which contains over 1.4 billion edges. We will vary our node
configuration from 15 to 48 nodes using nodes of the type
c4.2xlarge, c4.4xlarge, and c4.8xlarge. All the configurations
are divisible by three, so there are an even number of each
type of compute node in every cluster configuration. Figure
9 shows the results from the scale-out experiments on the
twitter data set using the PageRank algorithm. Generally,

Table 3: Scale out configurations (c4 type)

Config Name c4.2xlarge c4.4xlarge c4.8xlarge

Config 1 12 8 4
Config 2 8 8 8
Config 3 4 8 12
Config 4 3 5 16

the hybrid and ginger algorithms perform the best, followed
by grid, greedy, and random. At a size of 48 nodes, there
is an inflection point and performance begins to worsen for
all nodes. Between 36 and 48 nodes, the added commu-
nication imposed by scaling out overcomes the benefit of
additional compute units. For all partitioning approaches,
the skewed version performs better than the unskewed ap-
proaches. Overall, the skewed approaches achieve a 18%
decrease in runtime across all cluster sizes when compared
to the baseline versions. We were not able to include the
baseline Ginger partitioning scheme in our scale-out experi-
ment for a 15 node cluster, since it has a very large memory
overhead for auxiliary data structures that exceeds the mem-
ory capacity of our nodes for the smallest split. However,
Skewed Ginger works on correctly on all node configurations
due to the use of a memory based skew factor, which opti-
mizes the placement of the graph according to the memory
requirements of each node.

The previous experiments all possessed an even number of
each heterogeneous node type in the cluster. Heterogeneity-
aware partitioning, however, is equally applicable to clusters
built from any ratio of nodes. Figure 10 shows the percent-
age performance improvement of the skewed vs. unskewed
partitioning algorithms on a 24 node cluster using the config-
urations listed in Table 3. The skewing algorithms are able
to provide a performance improvement over the baseline ver-
sions all of the algorithms and data sets, with the relative
benefit of the skewing algorithms increasing as the cluster
is scaled in proportion to larger nodes. Config 4, which
contains the most amount of powerful c4.8xlarge nodes, sees
the most performance improvement across most of the work-
loads. This phenomena makes good intuitive sense, as the
added benefit of correctly partitioning data in the presence
of a large number of powerful nodes is more than correctly
skewing across the same number of weaker nodes. While all
the algorithms perform well, Random illustrates the greatest
percentage improvement, due to the original version’s poor
performance.

5. RELATED WORK
Our work is implemented on the PowerGraph[13] plat-

form with PowerLyra [8] partitioning algorithm extensions.
However, there are many other graph analytics frameworks
available. Variants and extensions of GraphLab include the
single node graph processing frameworks[24][21] and dis-
tributed frameworks[23]. Other popular non-GraphLab sys-
tems that are commonly used for graph applications include
Pregel[25], Spark [30], and Giraph [7]. The various strengths
and weakness of these and other similar graph processing
platforms have been thoroughly explored in the prior work
[15][14].

A few papers attempt to extend the insights obtained
in these graph processing frameworks to specifically tackle
data center heterogeneity for graph workloads. Zuhair[18]

0

5

10

15

20

25

30

35

Config 1 Config 2 Config 3 Config 4

Pe
rc

en
ta

ge
 Im

pr
ov

em
en

t

Cluster Size

Random Greedy Grid Hybrid Ginger

Figure 10: Skew vs. unskew percentage improvement. The
improvement from the heterogeneity-aware algorithms in-
creases as more powerful nodes are introduced into the clus-
ter.

et al. target heterogeneity in their Pregel-like system called
Mizan. Mizan performs runtime monitoring and attempts to
perform vertex migration to balance computation and com-
munication overheads. A similar technique to leverage the
potential of node-level heterogeneity is performed by Semih
[27] et. al in their GPS (graph processing system) frame-
work, which also uses dynamic load balancing in a Pregel-
like graph abstraction to support heterogeneity. To the best
of our knowledge, no currently released graph processing
framework specifically supports heterogeneous placement of
data during ingress.

A number of non-graph specific processing frameworks
have attempted to tackle the issue of data center heterogene-
ity, either explicitly or indirectly through the use of general
purpose load balancing techniques. A significant number of
these approaches have focused on the MapReduce [10] com-
putational model. One of the earliest works in this area was
LATE [31], a MapReduce optimization strategy that focuses
on mitigating the affects of stragglers on data center perfor-
mance. Zacharia[11] et al. propose the MARLAMapReduce
framework for improving the performance of Hadoop[2] sys-
tems in a heterogeneous environment. MARLA’s dynamic
load balancing attempts to hide heterogeneity and load im-
balance from the user while maintaining the reliability and
useability features of regular Hadoop. Faraz[6] et al. pro-
pose Tarazu, another framework that targets heterogeneous
clusters with MapReduce. Their work proposes a number
of MapReduce specific optimizations, including communi-
cation aware scheduling of tasks and load balancing tech-
niques. Despite operating on large data sets on heteroge-
neous clusters, these works do not overlap with our own due
to our graph centric approach.

6. CONCLUSION
Graph analytics workloads have emerged as an extremely

important class of problem during the age of big data. As the
amount of heterogeneity in data centers continue to increase
due to virtualization, work imbalance, and the explicit in-
troduction of heterogeneous compute units, it becomes more
and more critical for graph processing frameworks to evolve
as well. Towards this end, we have developed a number
of graph partitioning strategies that attempt to account for

heterogeneity in the data ingress phase of the popular Pow-
erGraph framework. We show that simple estimations of
intranode throughput, which we call the skew factor, can
drive huge performance wins using heterogeneity-aware par-
titioning strategies. We have modified 5 existing data ingress
strategies to take advantage of the skew factor to optimize
application execution.

We illustrate that our graph ingress strategies reduce ap-
plication runtime by as much as 64% with an average of
32% on a small 4-node heterogeneous cluster across a vari-
ety of applications and data sets. These partitioning strate-
gies also reduce the replication factor while adhering to the
load balancing constraints imposed by the skew factor esti-
mation. Additionally, we show that our strategies operate
at scale on a 48 node cluster, achieving an average 18% im-
provement in runtime. Finally, we investigate the impact of
different heterogeneity mixes within a cluster, and achieve
a runtime reduction of as much as 32% on PageRank when
using clusters skewed towards high performance nodes.

7. ACKNOWLEDGMENTS
This work was supported in part by Semiconductor Re-

search Corporation Task ID 2504, National Science Foun-
dation grants 1337393 and 1117895, Oracle, Huawei and
AMD. The authors would also like to thank Amazon for
their donation of the EC2 compute resources used in this
work. Any opinions, findings, conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of SRC, NSF, or any
other sponsors.

8. REFERENCES
[1] Amazon EC2. http://aws.amazon.com/ec2. Accessed:

04-16-2015.

[2] Apache hadoop. https://hadoop.apache.org/.
Accessed: 08-11-2015.

[3] Ec2 network estimations.
http://www.aerospike.com/blog/
boosting-amazon-ec2-network-for-high-throughput.
Accessed: 04-16-2015.

[4] Intel xeon phi coprocessor.
http://www.intel.com/content/www/us/en/
processors/xeon/xeon-phi-detail.html. Accessed:
04-16-2015.

[5] Netflix dataset. http:
//www.select.cs.cmu.edu/code/graphlab/datasets/.
Accessed: 04-16-2015.

[6] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and
T. N. Vijaykumar. Tarazu: Optimizing mapreduce on
heterogeneous clusters. In Proceedings of the
Seventeenth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS XVII, pages 61–74, New York, NY,
USA, 2012. ACM.

[7] C. Avery. Giraph: Large-scale graph processing
infrastructure on hadoop. Proceedings of the Hadoop
Summit. Santa Clara, 2011.

[8] R. Chen, J. Shi, Y. Chen, and H. Chen. Powerlyra:
Differentiated graph computation and partitioning on
skewed graphs. In EuroSys, Apr. 2015.

[9] B.-G. Chun, G. Iannaccone, G. Iannaccone, R. Katz,
G. Lee, and L. Niccolini. An energy case for hybrid

datacenters. SIGOPS Oper. Syst. Rev., 44(1):76–80,
Mar. 2010.

[10] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[11] Z. Fadika, E. Dede, J. Hartog, and M. Govindaraju.
Marla: Mapreduce for heterogeneous clusters. In
Proceedings of the 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing, CCGRID ’12, pages 49–56, Washington,
DC, USA, 2012. IEEE Computer Society.

[12] S. Garg, S. Sundaram, and H. D. Patel. Robust
heterogeneous data center design: A principled
approach. SIGMETRICS Perform. Eval. Rev.,
39(3):28–30, Dec. 2011.

[13] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In OSDI, pages 17–30.
USENIX Association, 2012.

[14] Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup,
C. Martella, and T. L. Willke. How well do
graph-processing platforms perform? an empirical
performance evaluation and analysis. In Proceedings of
the 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, IPDPS ’14, pages
395–404, Washington, DC, USA, 2014. IEEE
Computer Society.

[15] M. Han, K. Daudjee, K. Ammar, M. T. Özsu,
X. Wang, and T. Jin. An experimental comparison of
pregel-like graph processing systems. Proc. VLDB
Endow., 7(12):1047–1058, Aug. 2014.

[16] N. Jain, G. Liao, and T. L. Willke. Graphbuilder:
Scalable graph etl framework. GRADES, pages
4:1–4:6, 2013.

[17] G. Karypis and V. Kumar. Metis-unstructured graph
partitioning and sparse matrix ordering system,
version 2.0. 1995.

[18] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom,
D. Williams, and P. Kalnis. Mizan: A system for
dynamic load balancing in large-scale graph
processing. In Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, pages
169–182, New York, NY, USA, 2013. ACM.

[19] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
Computer, (8):30–37, 2009.

[20] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In WWW
’10: Proceedings of the 19th international conference
on World wide web, pages 591–600, New York, NY,
USA, 2010. ACM.

[21] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi:
Large-scale graph computation on just a pc. In
Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation,
OSDI’12, pages 31–46, Berkeley, CA, USA, 2012.
USENIX Association.

[22] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data. Accessed: 04-16-2015.

[23] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,
A. Kyrola, and J. M. Hellerstein. Distributed

graphlab: A framework for machine learning and data
mining in the cloud. Proc. VLDB Endow.,
5(8):716–727, Apr. 2012.

[24] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Graphlab: A new
framework for parallel machine learning. UAI, pages
340–349.

[25] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A
system for large-scale graph processing. In Proceedings
of the 2010 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’10, pages
135–146, New York, NY, USA, 2010. ACM.

[26] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
1999.

[27] S. Salihoglu and J. Widom. Gps: A graph processing
system. In Proceedings of the 25th International
Conference on Scientific and Statistical Database
Management, SSDBM, pages 22:1–22:12, New York,
NY, USA, 2013. ACM.

[28] T. Schank. Algorithmic aspects of triangle-based
network analysis. PhD thesis, University Karlsruhe,

2007.

[29] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and
M. Vojnovic. Fennel: Streaming graph partitioning for
massive scale graphs. In Proceedings of the 7th ACM
international conference on Web search and data
mining, pages 333–342. ACM, 2014.

[30] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster computing
with working sets. In Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing,
HotCloud’10, pages 10–10, Berkeley, CA, USA, 2010.
USENIX Association.

[31] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving mapreduce performance in
heterogeneous environments. In Proceedings of the 8th
USENIX Conference on Operating Systems Design
and Implementation, OSDI’08, pages 29–42, Berkeley,
CA, USA, 2008. USENIX Association.

[32] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan.
Large-scale parallel collaborative filtering for the
netflix prize. In Algorithmic Aspects in Information

and Management, pages 337–348. Springer, 2008.

