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Abstract—Fast and efficient design space exploration is a
critical requirement for designing computer systems, however,
the growing complexity of hardware/software systems and sig-
nificantly long run-times of detailed simulators often makes it
challenging. Machine learning (ML) models have been proposed
as popular alternatives that enable fast exploratory studies. The
accuracy of any ML model depends heavily on the representa-
tiveness of applications used for training the predictive models.
While prior studies have used standard benchmarks or hand-
tuned micro-benchmarks to train their predictive models, in this
paper, we argue that it is often sub-optimal because of their
limited coverage of the program state-space and their inability to
be representative of the larger suite of real-world applications. In
order to overcome challenges in creating representative training
sets, we propose Genesys, an automatic workload generation
methodology and framework, which builds upon key low-level
application characteristics and enables systematic generation of
applications covering a broad range of program behavior state-
space without increasing the training time. We demonstrate that
the automatically generated training sets improve upon the state-
space coverage provided by applications from popular bench-
marking suites like SPEC-CPU2006, MiBench, MediaBench,
TPC-H by over 11x and improve the accuracy of two machine
learning based power and performance prediction systems by
over 2.5x and 3.6x respectively.

I. INTRODUCTION

Fast and efficient design space exploration is a critical
requirement for designing and optimizing computer systems.
But the growing complexity of hardware systems coupled
with the rapid pace of software development makes effi-
cient design space exploration challenging. Generally, detailed
simulation-based techniques are employed for performing ac-
curate performance/power analysis of programs. However, the
high computational cost/run-time of detailed simulators [1]
and large workload sizes affect the efficiency of elaborate
exploratory studies. Machine learning (ML) based predictive
modeling has been explored in several prior research studies
[2, 3, 4, 5, 6, 7, 8, 9, 10] as a popular alternative that enables
fast design space exploration. ML models have also been
adopted in the industry, finding applications in areas such
as server-scheduling, cluster maintenance models, operating
system scheduling [11, 12] etc. For example, Google uses ML
models for making scheduling decisions on their clusters.

A typical supervised learning-based framework employed
for computer system modeling is shown in Figure 1. It consists
of two phases: training and prediction/testing. The training
phase involves learning the inherent behavioral patterns of a
set of training applications and creating a predictive model
based on the learned patterns. The prediction phase involves
using the created ML model for predicting desired metrics
for test applications. However, as the model learns patterns

Fig. 1: Machine learning based prediction framework

based on the behavior of training applications, its accuracy
depends significantly on the ability of the training set to
represent the wide-range of real-world applications that are run
on modern computer systems. If the target applications have
similar performance behavior as the training applications, the
accuracy of the model will be higher and vice versa.

Most prior studies [2, 5, 6, 8, 11, 13] leveraging machine
learning for computer design exploration select their training
sets from standard benchmarking suites (e.g., SPEC CPU [14,
15], SPECjbb [16], MiBench [17], Implantbench [18], TPC-
H [19], etc.), which consist of a ”few” selected benchmarks
representing certain classes of applications. But the number of
applications included in such suites is often far from being
sufficient for capturing the workload space or training any
statistical model effectively. Also, as standard benchmarking
suites evolve at a much slower pace as compared to real-world
software development, they are not always representative of
the entire suite of applications that are run on modern-day
computer systems. Furthermore, the significantly long run-
times of many standard benchmarks limits several past studies
to train their models by running either short subsets of the
benchmarks or using reduced input sets (e.g. - Minnespec
[20]), which further reduces the representativeness of the
training application sets. Few other studies [4, 9, 12] use hand-
tuned micro-benchmarks for training their predictive models,
however they are harder to write and increase the training time,
which limits the number of micro-benchmarks that can be used
to have a representative training set.

To overcome these challenges in creating representative
training programs for machine learning models, in this paper,
we propose “Genesys”, an automatic workload generation
methodology and framework that enables systematic gener-
ation of applications covering a broad range of the pro-
gram behavior state-space. Genesys builds on core low-level
application characteristics and systematically varies them to
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generate sets of synthetic benchmarks that can provide targeted
coverage of the workload space effectively. By enabling fast
and effective coverage of the program state-space, Genesys
aims to improve the accuracy of ML models used for design-
space exploration of computer systems. In this paper, we
demonstrate that using training sets automatically generated
by Genesys improves upon the state-space coverage provided
by applications from popular benchmarking suites (e.g., SPEC-
CPU2006, MiBench, MediaBench, TPC-H) by over 11x. We
also show that Genesys improves the accuracy of two machine
learning based power and performance prediction systems by
over 2.5x and 3.6x respectively. The key contributions of this
paper are as follows:

• We propose Genesys, an automatic workload synthesis
framework to systematically improve the representative-
ness and coverage of training application sets.

• We propose a novel metric, SpreadRatio, to quantify and
compare the state-space coverage provided by different
program sets.

• We show that by controlling 12 key application-specific
metrics in a systematic manner, Genesys can improve
upon the state-space coverage provided by popular, stan-
dard benchmarks like SPEC-CPU2006, MiBench, Medi-
aBench, TPC-H by over 11x.

• We also demonstrate that using targeted synthetic training
sets, the accuracy of two machine learning based power
and performance prediction models can be increased by
over 2.5x and 3.6x respectively.

The rest of this paper is organized as follows: In Section 2,
we provide a brief background about ML modeling followed
by discussing Genesys’s methodology and evaluation in sec-
tions 3 and 4 respectively. Section 5 discusses prior work and
section 6 concludes the paper.

II. BACKGROUND

A. Machine learning based modeling

ML techniques have been widely explored for architectural
performance/power prediction and micro-architectural design-
space studies. In this paper, we use the supervised learning-
based models, which typically consist of a training and a
prediction phase (Figure 1). During the training phase, a set
of programs, which constitute the training set, are executed
to capture their performance features as well as the target
reference metric(s) e.g., performance or power. In [6, 7, 9, 13],
these features are obtained from hardware performance events,
whereas in [2, 5, 8, 10], the underlying machine configurations
are also used. The learning algorithm constructs a predictive
model which associates applications’ characteristics with the
reference metric(s). During the prediction phase, test program
features are used as an input to the predictive model, which
produces estimates of the target characteristics.

The accuracy and usefulness of any such learning-based
approach depends heavily on the training sets that are used
for creating the predictive models. A well-formed training set
can improve the accuracy and applicability of the predictive
models to a wide range of test applications, while an ill-formed
training set can affect the statistical model (e.g, cause over-
fitting) and lead to inaccuracies during the prediction phase.
Ideally, a good training set should consist of:

Fig. 2: KMEANS cluster plot

• programs that are representative of the target applications.
As a wide-range of applications are run on modern com-
puter systems, it is important that the training programs
cover the application design-space sufficiently well. This
increases the likelihood of finding programs with similar
characteristics during the prediction phase.

• a large number of program instances that provide broader
and more denser coverage of the application state space. A
training set based on few program instances increases the
risk of over-fitting the model with very similar programs.

However, it is challenging to find the right set of applications
to create a balanced and broader-coverage training set.

Most prior studies [2, 5, 6, 8, 11, 12, 13] either use standard
benchmarks or special, hand-tuned micro-benchmarks [4, 9]
to train the predictive models. While standard benchmarking
suites usually consist of applications representing particular
application domains, they are not always representative of the
wide-variety of applications that are run on modern-day com-
puter systems. For example, Figure 2 compares a subset of the
SPEC CPU2006, MiBench benchmarks with popular big-data
applications (Memcached [21], HiBench [22] and Cassandra
[23] running the Yahoo! cloud serving benchmark [24]) using
an extensive set of performance metrics (e.g., instructions per
cycle (IPC), control flow performance, cache misses, etc.).
We can observe from the distinct cluster formations (KMeans
clustering-based) that there are significant differences in per-
formance characteristics between the two sets of applications.
Also, it is usually difficult to assess any application’s low-level
behavior by looking at the high-level application, unless you
are a domain expert. For example, Phansalkar et al [25] showed
that many benchmarks in SPEC CPU2006 suite from different
application domains exhibit similar behavior and vice versa.
Special, hand-tuned micro-benchmarks are definitely useful in
stressing particular program properties, but the process is very
tedious and time-consuming which can significantly increase
the training time. Finally, the number of program instances
that can be created in this manner is usually far from being
sufficient for training any statistical model.

B. Overcoming the limitations

In order to overcome the challenges in creating a balanced
set of programs for training ML models, we propose Genesys,
an automatic workload generation methodology and frame-
work that builds upon core low-level program characteristics
and enables systematic generation of applications covering a
broad range of the program behavior state-space. In the next
section, we will describe Genesys’s methodology in detail.
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Fig. 3: Genesys’s overall methodology and framework

III. METHODOLOGY

Genesys is a workload generation framework (shown in
Figure 3) that enables systematic generation of synthetic appli-
cations covering a broad range of the application state-space. It
builds upon a set of key workload-specific metrics that can be
controlled systematically to generate workloads with desired
properties. Each workload-specific metric corresponds to a
low-level program feature, which defines particular application
characteristics, and is available as a user-controllable knob. The
user can choose to fix the values of some (or all) core metrics
to generate targeted program behavior. For the remaining set
of core metrics (if any) whose values are not fixed by the user,
Genesys randomizes their values within reasonable bounds in
order to achieve well-rounded program state-space coverage
around the target behavior. By allowing each workload-specific
metric to be controlled using easy-to-use programmable knobs,
Genesys allows to create targeted benchmarks with desired
program features. Together, the values chosen for the core
metrics act as unique profiles for the synthetic workloads.
These workload profiles are fed into a code generator algorithm
that uses the target metric values to generate a suite of
synthetic applications. Together, these applications form a set
of unique training programs, which target particular aspects of
the program behavior depending upon the choice of the core
metrics and can be used to train any supervised ML model.

In this section, we will first present the core workload-
specific metrics used by Genesys followed by the workload
generation methodology. The core feature set is divided at a
high-level into three categories, depending upon the aspects
of program behavior that the individual metrics control. The
three categories, together with their associated sub-categories
and component metrics are shown in Table I and are described
below. It should be noted that the set of core metrics used
in this paper are not meant to be conclusive, rather they are
key metrics that affect different aspects of program behavior.
Nevertheless, Genesys’s framework is flexible enough to add
new metrics to control other aspects of program behavior.

A. Instruction-level characteristics

These metrics correspond to the instruction-level behavior
of the applications.

1) Instruction mix: The first metric is the application’s
instruction mix (IMIX). Genesys categorizes instructions into
fractions of loads and stores (memory), control-flow, integer
and floating-point instructions. It should be noted that the
framework is very flexible and can be easily extended to
support specific instruction categories. The target IMIX can
be provided as an input to Genesys directly, in which case it
generates programs having the desired overall IMIX. Other-

TABLE I: Core metrics forming the workload-specific profile

wise, IMIX fractions, randomized within bounded ranges, are
used to generate the suite of training applications.

2) Instruction count: The second metric that we consider
is instruction count (IC), which controls the static instruction
footprint of the application. IC can be provided by the user
directly or estimated automatically based on the target instruc-
tion cache miss rate (ICMR, metric 3). If the ICMR metric is
provided, Genesys determines the number of static instructions
to instantiate in the synthetic benchmark to achieve the target
ICMR. An initial estimate of the number of static instructions
is made based on the assumption of a default instruction cache
(Icache) size/configuration (32KB, 64 byte blocks, 2-way set-
associativity). This serves as an initial estimate only, the final
static code size is further tuned to achieve the target ICMR.

3) Instruction-level parallelism: Instruction-level paral-
lelism (ILP) is an important determinant of an application’s
performance. Tight producer-consumer chains in program se-
quences limit ILP and performance because of dependency-
induced serialization effects. Genesys models ILP by control-
ling the dependencies between instructions in the application
sequence using the dependency distance metric. Dependency
distance is defined as the total number of instructions in the
dynamic instruction stream between the production (write) and
consumption (read) of a register/memory location. We classify
dependency distance into 32 bins (values varying between 1
to 32 and higher), where each bin represents the fraction of
instructions having that particular dependency distance. The
desired dependency distance can be provided as an input
to Genesys or automatically randomized (within bounds) to
generate training programs with varying degrees of ILP.

B. Control-flow characteristics

These metrics affect the program’s control-flow behavior.

1) Average basic block size: Average basic block size is
an important metric because it determines the average number
of instructions that can be executed in the program sequence
without executing any control instructions. This can affect
performance significantly depending on the branch predictor
performance. Again, this metric could be provided directly as
an input or inferred from the ICMR metric (described before)
and the fraction of control instructions.

2) Branch predictability model: We consider two other
control-flow metrics: branch transition rate (BTR) and branch
misprediction rate. Prior research studies [26] have shown that
an application’s branch misprediction rate is highly correlated
with the transition characteristics of the branch instructions.
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The key idea behind this correlation is that higher the transition
probability of a branch instruction, the more difficult it is to
predict its next direction and vice versa. To model a certain
BTR, we choose a set of control instructions to be modeled
with high transition probabilities (frequent switching) and the
remaining branch instructions to have very low transition prob-
abilities (infrequent switching activity). Similarly, Genesys
can also model the transition probability of individual branch
instructions in a directly correlated fashion to achieve a target
branch misprediction rate (metric 7).

C. Memory-level characteristics

This section describes metrics that affect the memory
performance (data-side) of applications.

1) Data footprint: Data footprint metric determines the
range of data addresses accessed by the synthetic application
during its execution time. This is important because it can
determine performance of different levels of caches and mem-
ory based on how large the footprint is with respect to the
available cache size and memory structure. It controls the size
of the memory regions, which are accessed by the synthetic
application.

2) Memory access regularity: This metric determines if
the memory accesses made by load/store instructions of an
application should have regular or irregular behavior. For
irregular memory behavior, Genesys generates load/store in-
structions that access allocated and initialized memory regions
based on a randomly generated sequence. Regular memory
behavior is achieved using additional metrics (spatial-temporal
locality or L1/L2 cache miss rate metrics) as described below.

3) Spatial and temporal locality: The principle of data
locality and its impact on applications performance is widely
recognized. Genesys models regular data memory accesses
using simple strided stream classes over fixed-size data arrays,
where strides are defined to be the difference between consec-
utive effective addresses. Strides can be provided directly as
an input to Genesys to control spatial locality characteristics
(bins representing strides from -1K to 1K in multiples of
64B). Genesys also provides knobs to control the temporal
locality (8 bins expressed as powers-of-two from 0 to 128) in
the memory accesses. Temporal locality metric controls the
number of unique memory accesses between access to the
same memory location and affects the achieved cache miss
rates as well. Together, the stride and temporal locality bin
values are used to generate the sequence of memory addresses.

Genesys can also automatically estimate the strides (off-
sets) of the load/store instructions based on the target data
cache miss rate statistics. This approach is similar to that
adopted by Bell et al [27]. The strides for a particular memory
access is determined first by matching the L1 hit rate of a
load/store, followed by the L2 hit rate. We generate a table
that holds the correlation between L1/L2 cache hit rates and
the corresponding stride values to be used. We use the target
L1/L2 hit rate information along with this table to generate
stride values of load and store instructions. By treating all
memory accesses as streams and working from a base cache
configuration, the memory access model is kept simple.

D. Workload generation methodology

The workload synthesis algorithm, based on the metrics
discussed before, is as follows:

1) Generate a random number in the interval [0, 1] and select
a basic block based on this number and the block’s access
frequency.

2) Basic block’s size is determined to satisfy the mean and
standard deviation of the target basic block size.

3) The basic block is populated with instructions based on
the IMIX metrics, while ensuring that the last instruction
of the basic block is a branch instruction.

4) Every instruction is assigned a dependency distance (i.e.,
a previous instruction that it is dependent upon) in order
to satisfy the dependency distance criterion.

5) Load and store instructions are assigned a stride-offset
based on the memory access model described in the
previous section (regular or irregular).

6) An X86 test operation is used to set the condition codes
that affects the outcome of the conditional branch instruc-
tion at the end of each basic block. The “test” operand is
controlled to achieve the target BTR metric.

7) Increment the number of basic blocks generated.
8) If target number of basic blocks have been generated, go

to step 9, else update the individual metric distributions
and go back to step 1.

9) Available architected registers are assigned to each in-
struction while satisfying the data dependencies estab-
lished in step 4.

10) The above instruction sequence is generated as a part of
two-level nested loops where the inner loop controls the
application’s data footprint and the outer loop controls the
number of dynamic instructions (overall runtime). Every
static load or store instruction resets to the first element
of the strided memory streams and re-walks the entire
stream in the outer loop iterations.

The code generator generates the instruction sequence
using C-language with embedded X86-based assembly in-
structions. An example code snippet is shown in Figure 4.
The code generator can be modified to generate instructions
for a different ISA. The code is encompassed inside a main
header and malloc library calls are used to allocate memory
for the data streams. Volatile directives are used for each
asm statement and the program is compiled using the lowest
compiler optimization level (-O0 with gcc) in order to prevent
the compiler from optimizing out the machine instructions.

IV. EVALUATION

This section describes our experimental setup and evalua-
tion in detail.

A. Experimental setup

All our experiments are conducted on Intel Xeon E5-2430
v2 server class machines with Ivy-bridge micro-architecture
based processing cores, three levels of caches (1.5MB L2 and
15MB L3 cache) and 64 GB of main memory. For measuring

Fig. 4: Example synthetic code snippet
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hardware performance of different applications, we use Linux
perf tool [28] that provides an interface to the processor
performance counters. Power consumption is monitored using
Intel’s RAPL counters.

To show the efficacy of Genesys, we compare the synthetic
programs generated using Genesys with a training set compris-
ing of benchmarks drawn from several popular benchmarking
suites (hereafter referred to as the REAL training set). The
REAL training set includes 70 standard benchmarks: 29 bench-
marks from the SPEC CPU2006 suite (using ref inputs), 20
benchmarks from MiBench, 10 benchmarks from MediaBench
and 11 TPC-H queries.

Details about the synthetic training programs created using
Genesys (hereafter referred to as the GEN training sets) is pro-
vided in the following sections. Each GEN training program’s
size is restricted to complete within 1 to 15 seconds on the
target machine.

B. State-space coverage

In this section, we show how Genesys can be leveraged to
automatically create programs with different features leading
to a wider coverage of the program state-space. To do so,
we compare the program state-space coverage provided by the
REAL training set against the GEN training set. For this study,
the GEN set consists of 500 synthetic programs created using
Genesys. The GEN programs are uniquely generated by using
random combinations of individual metric values (chosen sys-
tematically within respective metric bounds). It takes roughly
a few (∼5-20) seconds to generate each GEN training program
and every program completes execution within 1 to 15 seconds
on the target machine. Thus, the training time to generate and
collect feature sets for the GEN training set is roughly equal
to running the 70 programs from the REAL set due to the
significantly longer run-times of several REAL benchmarks.

In order to compare the program state-space coverage
achieved by either training sets, we define a novel metric
called SpreadRatio, which is defined as the ratio of the area of
the convex hull envelope of the REAL versus GEN program
features. The convex hull [29] of a set S of points in the
Euclidean space is defined as the smallest convex set that
contains S. The convex hull of a set of points S in n dimensions
is the intersection of all convex sets containing S. For N points
p1, ..., pN in n-dimensions, the convex hull C is given by the
expression:

C ≡
N

∑
j=1

λ j p j : λ j ≥ 0 ∀ j and
N

∑
j=1

λ j = 1

Based on this definition of a convex hull, let CREAL

represent the convex hull of the points covered by the REAL
training set and CGEN represent the convex hull of the points
covered by the GEN training set. Then, SpreadRatio can be
defined using the following expression:

SpreadRatio =
Area(CGEN)

Area(CREAL)

Next, we compare the state-space coverage provided by
the GEN and REAL programs using the SpreadRatio metric.
To better demonstrate the degree of controllability provided
by Genesys, we first compare the GEN and REAL programs

using subsets of performance characteristics, followed by using
the entire set. Since the number of metrics is large, it is
difficult to visualize all the variables simultaneously to draw
any meaningful conclusions. Thus, we use statistical data
analysis techniques to simplify the comparison. Using a large
number of correlated variables tends to unduly overemphasize
the importance of a particular property. Therefore, we first
normalize the raw data to a unit normal distribution (mean
= 0, standard deviation = 1) and then, pre-process them
using Principal Component Analysis (PCA) [30]. PCA is
an effective statistical data analysis technique to reduce the
dimensionality of a data-set, while maintaining most of its
original information. PCA transforms the original variables
into a set of uncorrelated principal components (PCs). If
significant correlation exists between the original variables,
then most of the original information will be captured using
just the top few PCs.

First, we compare the memory subsystem performance
behavior of the GEN and REAL program sets based on the
L1 Dcache, Icache, L2 and LLC misses per kilo instruction
(MPKI) metrics. Figure 5a and 5b shows the scatterplot of the
top 4 PCs respectively. We can observe that applications from
the REAL set do not stress the instruction side performance
much, because of which the Icache MPKI for the REAL
programs is mostly very low. Such behavior is different from
the emerging big-data and cloud applications which have been
shown to stress the instruction side performance more heavily
[31, 32]. Nevertheless, by controlling Genesys’s I/D memory-
side metrics, it is possible to create programs that stress
the instruction and data-side performance to varying degrees.
Overall, we can see that GEN programs provide 25.4 times
(SpreadRatio = 25.4) higher coverage area than the REAL
programs for the first two principal components and 12.9 times
(SpreadRatio = 12.9) higher coverage than REAL programs in
the PC3 versus PC4 space.

Figure 5c compares the I/D TLB performance of the REAL
and GEN programs. The x-axis corresponds to the ITLB MPKI
whereas the y-axis corresponds to the DTLB MPKI of the
programs. We can see that although the standard benchmarks
provide good coverage in terms of DTLB performance, but
none of the REAL programs stress the ITLB much whereas the
GEN programs provide extensive state-space coverage in terms
of both the instruction and data TLB performance. Overall,
GEN training set provides 12.8 times higher coverage than
the REAL training set (SpreadRatio = 12.8).

Next, we consider the instruction-level performance char-
acteristics (shown in Figure 5d), based on the overall IPC,
μOps/instruction, IMIX and ILP (given by dependency-driven
pipeline stalls) metrics. We can see that GEN programs provide
8.1 times broader state-space coverage as compared to the
REAL programs for the instruction-level metrics as well.

Next, we compare the control-flow performance coverage
of the REAL and GEN programs as shown in Figure 5e. We
specifically consider the branch misprediction rate, average
basic block size, percentage of branch instructions. We can see
that the REAL programs have much better branch performance
coverage as compared to their cache and TLB performance.
But GEN programs still outperform the REAL set by providing
2.4x higher coverage (SpreadRatio = 2.4).

Figure 5f shows the state-space coverage provided by
the REAL and GEN training programs in the PC1 versus
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Fig. 5: State-space coverage of REAL and GEN programs using (a) Cache/memory behavior - PC1 vs PC2 (b) Cache/memory
behavior - PC3 vs PC4 (c) TLB behavior (d) Instruction-level behavior (e) Control-flow behavior (f) Overall characteristics

PC2 space using all performance features shown in Table II
including IPC. Overall, GEN provides 4.5x higher state-space
coverage as compared to the REAL set using all the program
features. We can thus, conclude that Genesys’s methodology of
controlling key low-level application metrics allows to easily
generate programs with varied performance characteristics.

C. Case-study: performance and power modeling using ma-
chine learning

In this section, we demonstrate that Genesys framework
can be leveraged to create targeted training sets by increasing
the coverage density around regions of interest in the perfor-
mance state-space. Using such targeted programs sets for train-
ing ML models, we demonstrate that significant improvements
in prediction accuracy for two power/performance prediction
frameworks can be achieved as compared to using standard
benchmarks. For this case study, we consider the case of per-
formance and power modeling of a given hardware platform.
The performance metric that we predict is the standard IPC of
the test program and the target power metric that we predict is
the average power consumption of the program in watts. It is

important to note that Genesys’s framework and methodology
is applicable to any supervised learning based ML model and
this case study merely serves as an example to demonstrate
the utility of Genesys’s framework in a particular context.

For this case study, Genesys is used to create targeted GEN
training sets (consisting of 60 synthetic benchmarks) having
desired performance characteristics. As such, the training time
using the GEN training applications is significantly lower as
compared to the REAL training set. For building the predictive
models, we collect a set of performance features, given in
Table II, by running the REAL and GEN training sets together
with the reference IPC or power metric. The choice of these
metrics is intended to characterize the application’s behavior
from a micro-architecture perspective. These characteristics are
significant predictors of application’s overall performance and
power. For example, the performance effect of increasing the
L1 Dcache size will have a larger impact on applications with
a high L1 Dcache miss rate.

1) Learning models: In this section, we introduce the
learning framework that we use for constructing the perfor-
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TABLE II: Measured hardware performance features

Performance Features

μOps/instruction FP Ops/instruction
branch/instruction branch miss/instruction
Icache MPKI Dcache MPKI
ITLB MPKI DTLB MPKI
L2 MPKI LLC MPKI

mance and power prediction models. Formally, for a given
program i, we denote xi ∈R

d as its d-dimensional performance
feature vector, and yi ∈R as the corresponding reference IPC or
power. The goal of the learning algorithm is to find a function
F : Rd → R such that,

F(xi)≈ yi ∀i in the training set.

Similar to prior research work [2, 7, 10], in this case-study,
we consider only the family of linear functions for F . Under
such assumptions, we formulate our problem of finding F as
the following optimization problem:

minimize
w

‖XT w−Y‖2
2 +λ‖w‖2

2 (1)

where X =
(
xT

1 . . .x
T
n

)
is a matrix with each row corre-

sponding to the performance feature vectors xi of each training
program, and Y = (y1 . . .yn) is a vector consisting of the
corresponding reference performance or power values. In our
case, λ is a tuning parameter chosen to be 1. The optimization
problem in equation 1 is called Ridge Regression [33]. While
minimizing the sum of square errors of the predictor, it
penalizes the model parameter w if its magnitude is large.
The λ‖w‖2

2 term is often called the l2-regularizer, which is
widely used to prevent over-fitting of the model [33]. Ridge
regression can be solved efficiently by using standard gradient
descent method [33]. We use the CVXOPT v1.1.7 library in
Python as our main computation tool for solving the ridge
regression problem.

2) Performance prediction results: This section presents
the results from predicting the performance (IPC) of a set of 18
test applications from SPEC-CPU2006, MiBench, Mediabench
and TPC-H benchmarks. The learning model described before
is trained using two different training sets: the REAL training
set benchmarks excluding the test benchmark and the GEN
training set benchmarks containing 60 synthetic programs
targeting the test benchmark performance characteristics. Indi-
vidual sets of GEN training programs are generated for each
test application by providing the target performance metrics
(e.g., IMIX, branch misprediction rate, cache miss rates, etc.
collected using performance counters) as an input to Genesys.
Figure 6 compares the IPC prediction accuracy using the two
training sets. We can see that using the GEN training set,
performance prediction accuracy improves for all test programs
except tonto from SPEC-CPU2006 suite, where the accuracy
reduces marginally. Overall, creating models using the GEN
training set has significantly lower prediction error (3.32%) as
compared to the REAL training set (12.26%), which is a 3.69
times improvement in prediction accuracy without increasing
the average training time significantly (owing to the shorter
runtime of the workload generation algorithm and the synthetic
benchmarks). Additionally, generating synthetic benchmarks
based on target performance metrics is a one-time effort, and
they can be reused for training different prediction models
(as shown in the next section), which results in significantly
shorter training time due to their shorter run-times.

Fig. 6: Performance prediction accuracy modeled using GEN
and REAL training sets

3) Power prediction results: This section presents the
results from predicting power consumption of a set of 18 test
applications from SPEC-CPU2006, MiBench, Mediabench and
TPC-H benchmarks. Again, we use and compare two different
training sets: the REAL training set benchmarks excluding
the test benchmark and the GEN training set benchmarks
generated for the performance prediction experiments before.
Figure 7 compares the power prediction accuracy using the
two training sets. We can see that power prediction accuracy
using GEN set improves for most benchmarks except for five
benchmarks libquantum, milc, soplex, leslie3D and zeusmp
where the prediction accuracy reduces marginally. On an
average though, creating models using the GEN training set
has significantly lower prediction error (6.19%) as compared
to the REAL training set (15.90%), which is a 2.57 times
improvement in prediction accuracy.

V. RELATED WORK

Analytical approaches are being used for performance pre-
diction for several decades [34, 35]. Lee and Brooks [2] used
regression-based modeling for micro-architecture design space
exploration. Joseph et al. [8] and Ipek et al. [3] used regression-
based and artificial neural networks based modeling for creat-
ing performance models. Zheng et al [6] used performance
counter based measurements on a host machine to predict
performance of another system. Genesys is a framework to
systematically generate training sets providing both broader
and denser coverage of the program state-space and can be
applied to all the discussed ML proposals.

Synthetic benchmarking has been applied for benchmark
cloning [27, 36, 37, 38] in prior studies. Bell et al. [27] profiled
applications at runtime to extract execution related metrics

Fig. 7: Power prediction accuracy modeled using GEN and
REAL training sets
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and created proxy binaries that could be executed on simu-
lators or real hardware. Other studies [37] cloned proprietary
benchmarks into synthetic proxies using microarchitecture-
independent attributes. Automatic program generation tech-
niques [39, 40] have also been used for functional hardware
verification. In contrast, this paper is the first proposal that
uses automatic workload generation to systematically improve
the state-space coverage of training sets for ML models.

VI. CONCLUSION

In this paper, we propose Genesys, a novel automatic
workload generation framework that enables systematic gen-
eration of representative training set applications, providing a
wider coverage of program behavior state-space, for effectively
training machine learning models. Genesys allows to control
a set of key workload-specific characteristics using easy-to-
use, programmable knobs and thereby, provides the ability to
generate applications targeting specific program properties as
well. In order to compare the state-space coverage provided by
different sets of applications, we define a novel metric called
SpreadRatio, which is based on the area of the convex hull
envelope surrounding the program points. We demonstrate that
by using automatically generated training sets, it is possible
to achieve over 11 times higher state-space coverage than
that provided by popular, standard benchmarks such as SPEC-
CPU2006, MiBench, MediaBench and TPC-H. We also show
that modeling using targeted synthetic training sets improves
the predictability/accuracy of two machine learning based
power and performance prediction systems by over 2.5x and
3.6x respectively.
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[3] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz,
“Efficiently exploring architectural design spaces via predictive model-
ing,” SIGPLAN Not., vol. 41, no. 11, pp. 195–206, Oct. 2006.

[4] N. Ardalani, C. Lestourgeon, K. Sankaralingam, and X. Zhu, “Cross-
architecture performance prediction (xapp) using cpu code to predict
gpu performance.” in Micro, 2015, pp. 725–737.

[5] C. Dubach, T. Jones, and M. O’Boyle, “Microarchitectural design space
exploration using an architecture-centric approach,” in MICRO 2007,
Dec 2007, pp. 262–271.

[6] X. Zheng, P. Ravikumar, L. K. John, and A. Gerstlauer, “Learning-based
analytical cross-platform performance prediction,” in SAMOS, 2015, pp.
52–59.

[7] W. Lee, Y. Kim, J. H. Ryoo, D. Sunwoo, A. Gerstlauer, and L. K. John,
“Powertrain: A learning-based calibration of mcpat power models.” in
ISLPED. IEEE, 2015, pp. 189–194.

[8] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil, “A predictive
performance model for superscalar processors,” in MICRO. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 161–170.

[9] K. Singh, M. Bhadauria, and S. A. McKee, “Real time power estimation
and thread scheduling via performance counters,” SIGARCH Comput.

Archit. News, vol. 37, no. 2, pp. 46–55, Jul. 2009.

[10] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou,
“Gpgpu performance and power estimation using machine learning,” in
HPCA, 2015, pp. 564–576.

[11] S.-w. Liao, T.-H. Hung, D. Nguyen, C. Chou, C. Tu, and H. Zhou, “Ma-
chine learning-based prefetch optimization for data center applications,”
in SC, 2009, pp. 56:1–56:10.

[12] A. Negi and P. K. Kumar, “Applying machine learning techniques to
improve linux process scheduling,” in TENCON 2005 2005 IEEE Region

10, Nov 2005, pp. 1–6.
[13] S. Sharkawi, D. DeSota, R. Panda, R. Indukuru, S. Stevens, V. E. Taylor,

and X. Wu, “Performance projection of hpc applications using spec
cfp2006 benchmarks.” in IPDPS. IEEE, 2009, pp. 1–12.

[14] “SPEC CPU2006,” https://www.spec.org/cpu2006.
[15] “SPEC CPU2000,” https://www.spec.org/cpu2000.
[16] “SPECjbb 2005,” https://www.spec.org/jbb2005/.
[17] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and

R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in WWC-4. Washington, DC, USA: IEEE Computer
Society, 2001, pp. 3–14.

[18] Z. Jin and A. C. Cheng, “Implantbench: Characterizing and projecting
representative benchmarks for emerging bioimplantable computing,”
IEEE Micro, vol. 28, no. 4, pp. 71–91, July 2008.

[19] “TPC-H Benchmark Suite,” http://www.tpc.org/tpch.
[20] A. J. KleinOsowski and D. J. Lilja, “Minnespec: A new spec benchmark

workload for simulation-based computer architecture research.” Com-

puter Architecture Letters, 2002.
[21] B. Fitzpatrick, “Distributed caching with memcached,” Linux J., vol.

2004, no. 124, Aug. 2004.
[22] S. Huang, J. Huang, J. Dai, T. Xie, and B. H. 0002, “The hibench bench-

mark suite: Characterization of the mapreduce-based data analysis.” in
ICDE Workshops. IEEE, 2010, pp. 41–51.

[23] “Cassandra,” wiki.apache.org/cassandra/FrontPage.
[24] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with ycsb,” in SoCC, 2010, pp.
143–154.

[25] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John, “Measuring
program similarity: Experiments with spec cpu benchmark suites,” in
IEEE ISPASS, 2005, pp. 10–20.

[26] M. Haungs, P. Sallee, and M. K. Farrens, “Branch transition rate: A new
metric for improved branch classification analysis.” in HPCA. IEEE
Computer Society, 2000, pp. 241–250.

[27] R. H. Bell, Jr. and L. K. John, “Improved automatic testcase synthesis
for performance model validation,” in ICS. New York, NY, USA: ACM,
2005, pp. 111–120.

[28] “Linux perf tool,” https://perf.wiki.kernel.org/index.php/Main Page.
[29] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algo-

rithm for convex hulls,” ACM TRANSACTIONS ON MATHEMATICAL

SOFTWARE, vol. 22, no. 4, pp. 469–483, 1996.
[30] G. Dunteman, Principal Component Analysis. Sage Publications, 1989.
[31] R. Panda, C. Erb, M. LeBeane, J. Ryoo, and L. K. John, “Performance

characterization of modern databases on out-of-order cpus,” in IEEE

SBAC-PAD, 2015.
[32] R. Panda and L. K. John, “Data analytics workloads: Characterization

and similarity analysis.” in IPCCC. IEEE, 2014, pp. 1–9.
[33] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The MIT

Press, 2012.
[34] D. B. Noonburg and J. P. Shen, “Theoretical modeling of superscalar

processor performance,” in Micro, 1994, pp. 52–62.
[35] P. G. Emma and E. S. Davidson, “Characterization of branch and data

dependencies in programs for evaluating pipeline performance,” IEEE

Transactions on Computers, vol. 36, no. 7, pp. 859–875, 1987.
[36] L. Eeckhout, K. D. Bosschere, and H. Neefs, “Performance analysis

through synthetic trace generation,” IEEE ISPASS, vol. 0, p. i, 2000.
[37] A. Joshi, L. Eeckhout, R. H. B. Jr., and L. K. John, “Performance

cloning: A technique for disseminating proprietary applications as bench-
marks.” in IISWC. IEEE Computer Society, 2006, pp. 105–115.

[38] E. Deniz, A. Sen, B. Kahne, and J. Holt, “Minime: Pattern-aware
multicore benchmark synthesizer.” IEEE Trans. Computers, vol. 64, pp.
2239–2252, 2015.

[39] A. Aharon, D. Goodman, M. Levinger, Y. Lichtenstein, Y. Malka,
C. Metzger, M. Molcho, and G. Shurek, “Test program generation for
functional verification of powerpc processors in ibm.” in DAC, 1995, pp.
279–285.

[40] S. Ur and Y. Yadin, “Micro architecture coverage directed generation of
test programs,” in DAC, 1999, pp. 175–180.

123



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


