- The University of Texas at Austin
Electrical and Computer

| PhD Defense Engineering

Optimizing Communication for
Clusters of GPUs

Michael LeBeane
mlebeane@utexas.edu

Advisor: Lizy K. John

The University of Texas at Austin

&J Electrical and C it
Problem Statement ectrical and Computer

Engineering

GPUs and Networks in the Wild

GPUs are everywhere in HPC, Big Data, Machine Learning, and beyond
Excellent performance/watt for many classes of data-parallel computation

Many GPUs are required to solve the biggest computational problems
Can only fit so many GPUs in a single node!

GPUs need to talk to each other through Network Interface Controllers (NICs)
Path between GPU and NIC needs to be efficient

Vendor’s are selling machines filled with many GPUs and NICs:

Nvidia’s DGX-2 AMD’s Project 47 Node
16 Tesla V100 4 Radeon Instinct GPUs
8 Mellanox 100G NICs 2 Mellanox 100G NICs
2 Ethernet NICs 1 EPYC 7601 32-Core CPU
2 Xeon Platinum 2:1 GPU/NIC Ratio

1.6:1 GPU/NIC Ratio

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Problem Statement

Engineering

IOC = 10 Controller

Today’s GPU Networks

Largely focused on an optimized data plane

Path taken by the application data that needs to be transferred by the network

Industry technologies such as ROCn RDMA and GPUDirect RDMA allow peer-to-peer
data transfers

Initiator
CP ===N —
U IOC' i GPU 'd' \‘ GPU ' CPU
Cache I Memory 1 L_Memory Cache
Network -
-——--E I\/Iemory? Memory ﬂ
Memor NIC |\ NIC Memor

Michael LeBeane — PhD Defense

07/16/2018

The University of Texas at Austi
Problem Statement

Electrical and Computer
Engineering

IOC = 10 Controller

Challenges with Today’'s GPU Networks

Control plane is unoptimized!

Focused on a host-centric model where only the CPU can coordinate network transfers
Very high latencies to perform networking from the GPU

Initiator

per—y L | -y
I~ CPU oc GPU @\
Cache =™ Memory

| — Network
\ I

I Memory

’

|

1

y ,
|—\~"M‘éﬁory NIC {

Y=

Michael LeBeane — PhD Defense

07/16/2018

The University of Texas at Austin
Electrical and Computer

Problem Statement Engineering

Motivating Example for Control Plane Optimizations

©

Nodes/

TP
[l [8]s]

©

©
i

.

1 1
Communication

>
Time

GPU Allreduce Computation
Many communication/computation phases

Scaling out increases the number phases

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Problem Statement Engineering

Thesis Statement

GPU networking can be improved by both software and hardware enhancements
that enable GPUs to more directly interface with the network control plane.

Proposed Solutions

Extended Task Queuing

Direct NIC-to-GPU active messaging
Command Processor Networking

Dynamic communication using on-chip GPU Command Processor
GPU Triggered Networking

Initiate messages without critical path CPU

Michael LeBeane — PhD Defense 07/16/2018

The University as at Austin
& Electrical and Computer

Engineering

Outline

= Introduction

= Contribution 1: Extended Task Queuing

= Contribution 2: Command Processor Networking
= Contribution 3: GPU Triggered Networking

= Conclusion

Michael LeBeane — PhD Defense 07/16/2018

Contribution 1: Extended Task Queuing (XTQ)

The University of Texas at Austin
Electrical and Computer
Engineering

Local GPU Work Dispatch

GPUs consume work through in-memory
command queues

Queue format standardized through
Heterogeneous System Architecture (HSA)

Any device can produce work for another device

Assumes unified virtual address space

Can we extend this across a node?
NIC doesn’'t know how to talk to HSA queues

Initiator doesn’t know the virtual addresses of
resources at the target

Devices

GPU/CPU GPU

(Producer) (Consumer)

Command

Packet ~, .J

Virtual
Memory

Vs

Command
— Queue

07/16/2018

Michael LeBeane — PhD Defense

Contribution 1: Extended Task Queuing (XTQ)

Extended Task Queuing (XTQ) Overview

XTQ allows direct access to remote GPU gueues

Teach NICs how to speak with HSA queues

Enables Active Messaging without target CPU involvement

Improves latency and frees CPU service thread(s)

Initiator Target
(R |
CPU / GPU XTQ NIC / 7_\‘XTQNIC AGPU CPU
Cachell Cache Cache 1 Cache I Cache Cache
I 1 | J
i \ /

\\ Memory

o]

- The University of Tc

Engineering

U4
\@’ Memory

M. LeBeane, B. Potter, A. Pan, A. Dutu, V. Agarwala, W. Lee, D. Majeti, B. Ghimire, E. Van Tassell, S. Wasmundt, B. Benton, M. Breternitz, M. L. Chu, M. Thottethodi, L. K. John, and S. K. Reinhardt, \Extended task queuing: active
messages for heterogeneous systems," in Proc. of the Intl. Conf. for High Performance Computing, Networking, Storage and Analysis (SC), 2016.

Michael LeBeane — PhD Defense

07/16/2018

at Austin
Electrical and Computer

The University of Texas at Austin
Electrical and Computer

Contribution 1: Extended Task Queuing (XTQ) Engineering

Target-side XTQ Operation

Payload data streams into target-side receive buffer

Command descriptor is placed into command queue

Tightly Coupled Devices

XTQ NIC GPU CPU
_Llookup | Doorbe
| Sso
\\NN = ~

Ny
~~-~ =~~-__-- »
-* L pen—
3 Payload
ignal
Command Queue Data

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Contribution 1: Extended Task Queuing (XTQ) Engineering

Target-side XTQ Operation

NIC notifies the GPU using memory-mapped doorbell

GPU reads command packet

Tightly Coupled Devices
XTQ NIC GPU CPU

Lookup I Doorbe

7
N ? /

~ -
. l

t
-
I
]
7

]
'}
—’,
Signal Payload
Command Queue Data

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Contribution 1: Extended Task Queuing (XTQ) Engineering

Target-side XTQ Operation

GPU reads transferred data

GPU writes shared memory completion signal

Tightly Coupled Devices

XTQ NIC GPU CPU
Lookup I Doorbe ;
| OO
1 N Ysao
< S
\\ ~~~~ \‘

1

a,
S N
“a
3 Payload
ignal
Command Queue Data

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Engineering

Contribution 1: Extended Task Queuing (XTQ)

XTQ Coordinated Indices

How does initiator know about remote VAs at the target?

Use coordinated indices specified by the initiator

Lookup tables are populated by the target-side XTQ Library

I Queue Lookup
RDMA Header " TargetPID Table
|
I Dz o oxF123
Command Packet | Queue |
i
Index
|
Kernel Arguments : Queue Lookup Table
I Base Address Register
"
Data Payload |
" Example Queue Lookup

Michael LeBeane — PhD Defense

Unified Virtual
Memory
S

o\
O
/R
N

ST 2

07/16/2018

Contribution 1: Extended Task Queuing (XTQ)

XTQ Runtime API

The University of Texas at Austi

Electrical and Com;
Engineering

XTQ Put is implemented as a simple extension to standard RDMA put operation

Compatible with many low-level RDMA transports (e.g. InfiniBand, RoCE, Portals 4, IWARP, etc.)

XTQ Registration APl is used to provide address index-to-address translations

Regular RDMA Put Operation

XTQ-Enhanced RDMA Put Operation

XTQ Rewrite Registration API

Put Command Fields » Additional XTQ Fields

Target NID/PID
Send Buffer Ptr.
Send Buffer Length
Target Buffer Index

Transport specific metadata

Michael LeBeane — PhD Defense

1
I
1
1
1
1
1

1

1

1
1
1
1
1
1
I

]

1
/

Remote Queue Index
Remote Function/Kernel Index
GPU command packet

Kernel/Function Launch
Parameters

A Register Queue
— Queue Desc. VA

A Register Function
— Function Ptr. VA
— Target Side Buffer VA

A Register Kernel
— Kernel Ptr. VA
— Target Side Buffer VA
— Kernel Argument Size
— Completion Signal VA

07/16/2018

The University

t Austin

of Texas a
Electrical and Computer

Contribution 1: Extended Task Queuing (XTQ)

Experimental Setup

CPU and Memory Configuration

Type
[,D-Cache
L2-Cache
L3-Cache
DRAM

4-wide OOO, x86, 8 cores @ 4GHz
64KB, 2-way, 2 cycles

2MB, 8-way, 8 cycles

16MB, 16-way, 20 cycles

DDR3, 8 Channels, 800MHz

GPU Configuration

Type

CU Config
Wavefronts
V-Cache
K-Cache
I-Cache
L2-Cache

AMD GCN3 @ 1GHz

24 CUs with 4 SIMD-16 engines
40 Waves per SIMD (64 lanes)
32KB, 16-way, 12 cycles, per CU
32KB, 8-way, 12 cycles, per 4 CU
64KB, 8-way, 12 cycles, per 4 CU
1MB, 16-way, 8 banks, 100 cycles

NIC Configuration

Link Speed
Topology

100ns/ 100Gbps
Star

Michael LeBeane — PhD Defense

CPU: Standard CPU-only systems

Baseline non-accelerated system

HSA: Currently available GPU
systems

Involves CPU runtime

XTQ: Extended Task Queuing

Enables efficient active messaging
style communication that bypasses the
CPU on the target

Engineering

- y NIC GPU CPU
Cache Cache Cachef
| 1
! ,'
‘\ Memory 4
~.--—————————’
= Ty NIC GPU ‘C_F:U~
_
Cache 4Cache rCache \
| 1 I
1 | . I
| \ ;
\\~~——I\-/I-einzrl————',
"""" NIC GPU CPU
_: Cache ‘Cache Cache
' i
N]
N o o/ Memory

07/16/2018

The University of Texas at Austin

Electrical and Computer

Contribution 1: Extended Task Queuing (XTQ)

Engineering

Latency Decomposition

)

g I CPU 0.31 0.22 0.42 014 | 0.65 BT =

v 4KB HSA 0.31 0.22 0.43 014 0.66 | 0.55 +}_
o1 o i 15%
| XTQ 031 024 044 | 015 | o028 | 059 !
- 0.06 0.07 0.06—

) : CPU 0.31 011 0.31 021 | 0.08
< 164B HSA 031 0.11 0.30 0.61 EE .
=N XTQ. 031 0.16 0.31 025 | 023 { 19%
nv 0.09 — 0.07
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Time (Us)
O CPU PtIPut B NIC Initiator Put B Network NIC Target Put O GPU Launch OGPU Kernel Execution OCPU Completion

g 4 2 2000 ——CpU

s 10 Py 2 | _-
E1 g . K1 g 180 s !
- - ol e 1000 +ATEIXTQ et i
— i 21 - g # . — I £ i S

oy O 3 15 s -

o]0] - =1 z

wl (2 (3 T |

ml o1 = 0

I 1 16 256 4K 64K M nv 0 8 16 24 32 40 48 56 64
Data Items (4 Byte Integers) Nodes

MPIl Accumulate MPI Allreduce

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Speedups bound by % time application
AlexNet AN4 CIFAR Large MNIST MNIST
LST Synth Conv Hidden blocked on network data

Contribution 1: Extended Task Queuing (XTQ) Engineering
Results
Alex Net Classification 14% 4672
N 15 AN4 LSTM Speech 50% 131192
: ECPU ®BHSA BXTQ CIFAR Classification 4% 939820
e Large Synth Synthetic 28% 52800
: MNIST Conv Text Recognition 12% 900000
ol %1'3 MNIST Hidden Text Recognition ~ 29% 900000
ol S
s 8 : e :
g1 gl Use Microsoft’s Cognitive Toolkit and
N | 8
T84 sample workloads
ol D
%l o
AR Projected using simulation results +
| .y
: profiling data from TACC’s Stampede
I 09 supercomputer
|
1 08
|
|
|
|

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
& Electrical and Computer

Engineering

Outline

Introduction

Contribution 2: Command Processor Networking
Contribution 3: GPU Triggered Networking

Conclusion

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austi

ibuti i & Electrical and Comput
Contribution 2: Command Processor Networking (ComP-Net) I

Motivating Intra-kernel Networking

What have other researchers tried? 1 4 16 64 256

Kernel Commands Queued

| 20 4
: .. - . =0-GPU 1
XTQ provides optimized remote : A e
kernel invocation L 16 | eGPl 3
. . |
But still at kernel boundaries)
: .1
Kernel launches are expensive! gl gl
o1 2
Best case ~3us @8
. ~1 5
Network latency is < 0.7us...... ol g 8
T o=
E1
nl 4
Can we do better? :
|
Networking from within a kernel? l
! 0
|
\

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Contribution 2: Command Processor Networking (ComP-Net)

Prior-art In Intra-kernel Networking

Engineering

Host Driven Networking (e.g., MPIl + CUDA)

GPU can send messages NIC Put

inside a kernel CPU |Launch Wait Send| Launch Wait Done
GPU Kernel Kernel

CPU thread is responsible for

takll_ng packets from GPU and GPU Host Networking

poking NIC NI ey e
CPU | Launch Wait Send| Wait |Done
GPU Kernel m{

Will refer to this style of intra-

kernel networking as GPU
Host Networking

S. Kim, S. Huh, Y. Hu, X. Zhang, E. Witchel, A. Wated, and M. Silberstein, “GPUnet: Networking Abstractions for GPU Programs,” In USENIX
Conf. on Operating Systems Design and Implementation (OSDI). 2014.

J. A. Stuart and J. D. Owens, “Message passing on data-parallel architectures,” In Intl. Symp. on Parallel Distributed Processing (IPDPS). 2009.

T. Gysi, J. Béar, and T. Hoefler., “dCUDA: hardware supported overlap of computation and communication,” In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (SC). 2016.

Michael LeBeane — PhD Defense

07/16/2018

Contribution 2: Command Processor Networking (ComP-Net)

Performance Problems with GPU Host Networking

The University of Texas at Austi

Electrical and
Engineering

i 100 =@=-Host Queues
Need multiple trips over IO bus | g 80 | —a=GPUQueues |0 s
| 2 g | -Neworklatency)/ [
2 | E
Where to place queues” JTIP S R —— -
I <
GPU memory vs. host memory LB 20 [l
(ON |
. . = 0 é
High latency in both cases 5 !) : o c1 1006
NOt SCa| able K%) i 100 Active Workgroups
a1 —@—1 Thread
4096 Work-groups fills the GPU L i g o0 | AaThwead g
_ _ A ° reass |
Still 40ps latency with 8 threads | & 0 | —o—8 Threads
: 8 40 | = =NetworkLatency| ... [/
D rrrrrerrrs-rrrrerr S : Y N R R gl < S
cy [ERGR] Wait ____Jsend] Wat Jbone] A
GPU _Kernel _ [Sepd{ | { 16 128 1024

: 4096
Active Workgroups

07/16/2018

Michael LeBeane — PhD Defense

The University of Texas at Austin
Electrical and Computer

Contribution 2: Command Processor Networking (ComP-Net) Engineering

Command Processor Overview

GPUs have built in CPUs called V\===================~ é ;J“““““““““':

Command Processors (CPs) i | ,f— !

- I

Scalar cores == good at running 1 _| ' {r { |

network runtime code i Compute Unit command || [y

Local Data Sh P !

Connect to GPU CUs through a i , — , i I

|

shared LLC i SIMD SIMD SIMD SIMD CPU Core :

- |

Traditionally used to launch i l I l l - 7 |

kernels : L1 Cfche 1 L1 Cache |/ i
I 1

But intra-kernel networking ! : : : LZICache : : | i

encourages less kernels..... : GPU Memory |

- I

! |

Michael LeBeane — PhD Defense 07/16/2018

- The University of Tc at Austin
Electrical and Computer

Contribution 2: Command Processor Networking (ComP-Net) Engineering

Command Processor Networking (ComP-Net) Overview

fmmmmmmmmm e mmmm e
1 Memory NG
e ! S et I
Uses built in CP to support | Ngmﬁ? 1T R
network operations I S :
p L {THosE

CP/GPU communicate over shared
L2 cache instead of PCle

GPU Host

Potentially much faster (lower
latency) than other GHN designs

B
0
(0]
L & N B BN BN _ B _ B B B B 0 B &0 B0 §B §B §]

| 1

I I T I

Scales naturally | i "Host | Epc.e ComP-Net i
Every GPU has multiple CP threads ! ' !

|

|

|_GPU | J@
- NIC

l12Cache ! A T D1y Nop NI

Host Queues ____.}

I
I I
I .

Memory PCle I
: Network Queues @ @ I
| I

M. LeBeane, K. Hamidouche, B. Benton, M. Breternitz, S. K. Reinhardt, and L. K. John, “ComP-Net: Command
Processor Networking for Efficient Intra-kernel Communications on GPUs," in Proc. of the Intl. Conf Parallel
Architectures and Compilation Techniques (PACT), 2018.

23 Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Contribution 2: Command Processor Networking (ComP-Net) Engineering

ComP-Net Producer/Consumer Queue

Work-Group Command Processor Thread
LDS / Non Coherent Cache Registers / Registers /
CP-Net GPU Context Non Coherent Cache Non Coherent Cache
Write Idx
Base Ptr CP-Net GPU Context CP-Net GPU Context

Base Ptr Base Ptr

Local Read Idx Local Read ldx

Read Idx Ptr

e mm=m—_————

Read ldx Status HIH Status Status Status M

Queue Entry Queue Entry Queue Entry Queue Entry

Cache/Memory/GPU Coherence Point

Main component of ComP-Net Runtime is CP/GPU producer/consumer queue

Most steps are straightforward

Michael LeBeane — PhD Defense 07/16/2018

Contribution 2: Command Processor Networking (ComP-Net)

ComP-Net Producer/Consumer Queue

e mm=m—_————

Work-Group

The University t Austin
Electrical and Computer
Engineering

Command Processor Thread

LDS / Non Coherent Cache

CP-Net GPU Context
Write ldx

Base Ptr
Read Idx Ptr

Local Read Idx

Registers / Registers /
Non Coherent Cache Non Coherent Cache
CP-Net GPU Context CP-Net GPU Context
Base Ptr Base Ptr

Local Read ldx

Read Idx

Status

Queue Entry

0| Status Status

Queue Entry Queue Entry

Cache/Memory/GPU Coherence Point

1la) Check if queue is full (using local Read Idx)

1b) If full, update Read Idx and loop till not full

Michael LeBeane — PhD Defense

Status

Queue Entry

07/16/2018

The University t Austin
Electrical and Computer

Contribution 2: Command Processor Networking (ComP-Net) Engineering

ComP-Net Producer/Consumer Queue

Work-Group Command Processor Thread
LDS / Non Coherent Cache Registers / Registers /
CP-Net GPU Context Non Coherent Cache Non Coherent Cache
Write Idx
Base Ptr CP-Net GPU Context CP-Net GPU Context

Base Ptr Base Ptr

Local Read Idx Local Read ldx

Read Idx Ptr

e mm=m—_————

Read ldx Status HIH Status Status Status M

-
,f‘: Queue Entry Queue Entry Queue Entry Queue Entry
~
f’
’ - .
g Cache/Memory/GPU Coherence Point

2) Fill Queue Entry with networking metadata

Or Inline small payloads in the Queue Entry itself

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Contribution 2: Command Processor Networking (ComP-Net) Engineering

ComP-Net Producer/Consumer Queue

Local Read Idx

Local Read Idx Local Read ldx

I
: Work-Group] Command Processor Thread
: LDS / Non Coherent Cache I Registers / Registers /
I CP-Net GPU Context : Non Coherent Cache Non Coherent Cache
! I
: I CP-Net GPU Context CP-Net GPU Context
I : — Base Pir
! I
I
! |

L------------------ --:—----
© "

Read ldx Status Status Status Status M

Queue Entry Queue Entry Queue Entry cesss Queue Entry

Cache/Memory/GPU Coherence Point

3) Set status flag with release marker to notify CP

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Contribution 2: Command Processor Networking (ComP-Net) Engineering

ComP-Net Producer/Consumer Queue

Base Ptr Base Ptr

Local Read Idx Local Read ldx

Read Idx Ptr

Local Read Idx

: Work-Group Command Processor Thread

: LDS / Non Coherent Cache Registers / Registers /

: CP-Net GPUContext a Non Coherent Cache Non Coherent Cache
Write ldx

: CP-Net GPU Context CP-Net GPU Context

|

|

|

|

Status Status Status Status M

Queue Entry Queue Entry Queue Entry cesss Queue Entry

Cache/Memory/GPU Coherence Point

4) Increment local Write Idx

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Contribution 2: Command Processor Networking (ComP-Net) Engineering

ComP-Net Producer/Consumer Queue

|
: Work-Group] Command Processor Thread
: LDS / Non Coherent Cache I Registers / Registers /
I CP-Net GPU Context : Non Coherent Cache Non Coherent Cache
! I
I I CP-Net GPU Context CP-Net GPU Context
I ! Base Ptr Base Ptr
: I
|
I LN)
|

Read Idx Status Status Status Status M

Queue Entry Queue Entry Queue Entry cesss Queue Entry

Cache/Memory/GPU Coherence Point
5) Check status bit to determine when CP completes operation

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Contribution 2: Command Processor Networking (ComP-Net) Engineering

ComP-Net Producer/Consumer Queue

|
: Work-Group] Command Processor Thread
: LDS / Non Coherent Cache I Registers / Registers /
I CP-Net GPU Context : Non Coherent Cache Non Coherent Cache
! I
I I CP-Net GPU Context CP-Net GPU Context
I ! Base Ptr Base Ptr
: I
|
I LN)
|

Read ldx Status Status Status Status M

Queue Entry Queue Entry Queue Entry cesss Queue Entry

Cache/Memory/GPU Coherence Point
1) Poll on next Queue Entry based on local Read Idx with acquire marker

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Contribution 2: Command Processor Networking (ComP-Net) Engineering

ComP-Net Producer/Consumer Queue

Local Read Idx Local Read ldx

Local Read Idx

I
: Work-Group] Command Processor Thread
: LDS / Non Coherent Cache I Registers / Registers /
I CP-Net GPU Context : Non Coherent Cache Non Coherent Cache
! I
: I CP-Net GPU Context CP-Net GPU Context
I : — Base Pir
! I
I
! |

Read ldx Status Status Status M

Queue Entry Queue Entry Queue Entry

Cache/Memory/GPU Coherence Point
2) Read data from Queue Entry

Michael LeBeane — PhD Defense 07/16/2018

The University t Austin
Electrical and Computer

Contribution 2: Command Processor Networking (ComP-Net) Engineering

ComP-Net Producer/Consumer Queue

Work-Group Command Processor Thread
LDS / Non Coherent Cache Registers / Registers /
CP-Net GPU Context Non Coherent Cache Non Coherent Cache
Write Idx
Base Ptr CP-Net GPU Context CP-Net GPU Context

Base Ptr Base Ptr

Local Read ldx Local Read ldx
___________________________ 3L

Read Idx Ptr

e mm=m—_————

Read ldx Status Status Status HINMA Status M

Queue Entry Queue Entry Queue Entry Queue Entry

Cache/Memory/GPU Coherence Point

3) Perform Network operation and set Status flag to 0 when complete with
release marker

Michael LeBeane — PhD Defense 07/16/2018

Contribution 2: Command Processor Networking (ComP-Net)

ComP-Net Producer/Consumer Queue

e mm=m—_————

Work-Group

The University t Austin
Electrical and Computer
Engineering

Command Processor Thread

LDS / Non Coherent Cache

CP-Net GPU Context
Write ldx

Base Ptr
Read Idx Ptr

Local Read Idx

Registers /

Registers /

Non Coherent Cache Non Coherent Cache

CP-Net GPU Context
Base Ptr

Local Read Idx

CP-Net GPU Context

Base Ptr

Queue Entry

Status Status

Queue Entry Queue Entry

Cache/Memory/GPU Coherence Point

4a) Update global read Idx

4b) Update local read Idx with release marker

Michael LeBeane — PhD Defense

Status

Queue Entry

07/16/2018

The University of Texas at Austin
Electrical and Computer

Contribution 2: Command Processor Networking (ComP-Net) Engineering

Tackling GPU Cache Thrashing

1

[Baseline LLC Locking i i .

4 09 Residency of data in GPU L2 is very small

|

I 0.8

|

|

IQ_ 0.7 - \\ .

1S oc \ Work-group data produced for CP is

o Yo I N .

. i y \ S < evicted when other work-groups are
44: © . 'Q: N Q N . .
3 EE N \ \ \ \ \ performing streaming memory accesses
o |
2 CIININEER Y
0 \ \ : :
m) 02 NN N - \ Can be solved through cache line locking

! \ NN NN

0.1 [N N) - . ..
: § § \ § \ Preliminary results are promising
| 0 [& | I N =k [N

Still much to explore here
@\Q °><°\<0 ,,)Q\'\'Q ,ﬁf,\'\i’) ,.\/Q\q'Q \f)\’f? ,\/Q\%Q (9\%‘9

Networking Wavefronts / Streaming Wavefronts

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin

o . &J Electrical and C t
Contribution 2: Command Processor Networking (ComP-Net) I

Experimental Setup

CPU and Memory Configuration

Type 8-wide OO0, x86, 8 cores @ 4GHz
CPU: Standard CPU-on |y Systems |,D-Cache 64KB, 2-way, 2 cycles
Baseline non-accelerated system L2-Cache 2MB, B-way, 8 cycles
L3-Cache 16MB, 16-way, 20 cycles
: Host Driven Networking DRAM DDR4, 8 Channels, 2133MHz
Kernel boundary networking (host MPI + CUDA)
Type AMD GCN3 @ 1.5GHz
CU Config 12 CUs with 4 SIMD-16 engines
Intra-kernel Networkinq Schemes: Wavefronts 40 Waves per SIMD (64 lanes)
] V-Cache 32KB, 16-way, 12 cycles, per CU
APU CPU/GPU on the Same Dle K-Cache 32KB, 8-way, 12 cycles, per 4 CU
Intra-kernel networking through host threads on an APU I-Cache 64KB, 8-way, 12 cycles, per 4 CU
] L2-Cache 1MB, 16-way, 8 banks, 100 cycles
dGPU: GPU Host Networking
Intra-kernel networking through host threads on a dGPU Type 2-wide 00O, x86, 2 cores @ 2GHz
D-Cache 32KB, 8-way, 4 cycles

ComP-Net: Command Processor Networking — 16KB, B-way, 4 cycles

Intra-kernel networking through command processor

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
o . Electrical and C t
Contribution 2: Command Processor Networking (ComP-Net) G e and Comper

Engineering

Results

g

* @ ComP-Net =A-dGPU -a-APU ~O~HDN =e=CPU

Node 1 (Bottom)

3
T |—>l

B (. <.

Node O (Top)

Bigger is Better L

2D Jacobhi Stencil

1D data decomposition

Relative Speedup v dGPU Baseline

Iterative compute and halo exchange

Three regions of interest

Per-node Problem Size (N x N Grid)

Michael LeBeane — PhD Defense

07/16/2018

The University of Texas at Austin

o . &J Electrical and C t
Contribution 2: Command Processor Networking (ComP-Net) I

Results

B2 OIE @

* @ ComP-Net =A-dGPU —1=- APU ~O~HDN =o—CPU

= =
N A~

o e
Relative Speedup
H

© O
oo

Bigger is Better

6 I I I I
0 4 8 12 16 20 24 28 32 36
Number of Nodes in Reduction
C 19 -ooEComPi-Net *dGPU '.TAPQ

64MB Reduction (strong scaling)
APU performs better than ComP-Net

ComP-Net is much more energy efficient

Smaller is Better

€ = ——
Energy Consumption

0 4 8 12 16 20 24 28 32 36
Number of Nodes in Reduction

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Contribution 2: Command Processor Networking (ComP-Net)

Results

mCPU OHDN SdGPU ®APU =ECom

P-Net

1.15

o
© o
© o

Projected Speedup

Bigger is Better
———————— - - - - -

0.85

AL LSS LSS ST SS)

o
oo

LSTM Conv Hidden

Michael LeBeane — PhD Defense

I
1
I
g1
L H
I_____
| &
]
|
I
1
I

AlexNet AN4 CIFAR MNIST MNIST Average

Engineering

Workload Name %Blocked

Alex Net

AN4 LSTM
CIFAR

Large Synth
MNIST Conv
MNIST Hidden

Classification
Speech
Classification
Synthetic

Text Recognition
Text Recognition

14%
50%
4%

28%
12%
29%

4672
131192
939820
52800
900000
900000

07/16/2018

The University of Texas at Austin
& Electrical and Computer

Engineering

Outline

Introduction

Contribution 2: Command Processor Networking
Contribution 3: GPU Triggered Networking

Conclusion

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Contribution 3: GPU Triggered Networking (GPU-TN) Engineering

GPU Triggered Networking (GPU-TN) Overview

CPU creates network cpU | Launch | Wait | Send |)f;unch | Wait)'I Done |
............................... N /l'\“

operation off the critical path gey [Kemel | [Kernel |
Registers with the NIC

GPU SImply ‘triggers, cPu | Launch | Wait Send | Wait,:l Done |
operation when the data is GPU [Kernel et |

ready

F) rov | d es | n t ra- ker N el G P U NIC....... GPUTnggeredNetworkmg ..
. i .. cpu | Launch [Send]
networklng Wlthout reqUIrIng GPU \‘l K ernel | ..

a CPU thread

M. LeBeane, K Hamidouche, B. Benton, M. Breternitz, S. K. Reinhardt, and L. K. John, “GPU Triggered Networking for Intra-Kernel
Communications,”in Intl. Conf. for High Performance Computing, Networking, Storage and Analysis (SC), 2017.

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austi

Electrical and Computer

Contribution 3: GPU Triggered Networking (GPU-TN) Engineering

GPU-TN Architecture

O CPuU Creates Triggered Entry
Trigger Entry consists of:

Network Operation Trigger List
Trigger Trigger

Counter
Threshold

Appends entry to Trigger List CPU

© GPU Fills Send Buffer
During kernel execution

GPU » Send Buffer

07/16/2018

Michael LeBeane — PhD Defense

The University of Texas at Austin
Electrical and Computer

Contribution 3: GPU Triggered Networking (GPU-TN) Engineering

GPU-TN Architecture

Trigger List

© GPu initiates Put operation Trigger
ntry Entry
GPU Provides Tag

O NIC sends message

Message triggered when counter - - - - oo ———
>= CPU provided threshold

Trigger Entry
Network
Operation

HW complexity?

Begin Network
Operation -~

“Trigger list’ might not be a list
CPU/GPU race conditions?

Allocate null entry for unexpected
triggers

Counter

Threshold

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Contribution 3: GPU Triggered Networking (GPU-TN) Engineering

Experimental Setup

CPU and Memory Configuration

Type 8-wide OO0, x86, 8 cores @ 4GHz
CPU: Standard CPU-only systems \D-Cache 64KB, 2-way, 2 cycles
Baseline non-accelerated system L2-Cache 2MB, 8-way, 8 cycles
] . L3-Cache 16MB, 16-way, 20 cycles
HDN: Host Driven Netwo rkl n g DRAM DDR4, 8 Channels, 2133MHz
No driver interactions on the critical path, but may involve GPU Configuration
CPU runtime Type AMD GCN3 @ 1.5GHz
. . CU Config 24 CUs with 4 SIMD-16 engines
GDS-Sim: GPUDirect Async
Wavefronts 40 Waves per SIMD (64 lanes)
Preregistration of communication but at kernel boundaries V-Cache 32KB, 16-way, 12 cycles, per CU
. K-Cache 32KB, 8-way, 12 cycles, per 4 CU
GPU Host Networkl n g I-Cache 64KB, 8-way, 12 cycles, per 4 CU
Intra-kernel networking through host threads L2-Cache 1MB, 16-way, 8 banks, 100 cycles
- -
GPU-TN: GPU Triggered Networking , :
Link Speed 100ns/ 100Gbps
Preregistration of network operations and intra-kernel Topology Star
networking

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin

Contribution 3: GPU Triggered Networking (GPU-TN) Engincering. T
A 1.6 i i i i
ReSUItS : ~A=HDN =©-GDS-Sim ~O~ GHN -:#:-GPU-TN
l 14&-",} ®eoe o :.... E
| =) 'Q’t-.i-o 5
) I 812 TASES At DY
I 8 8--~- : O 'o......
I 19 | 79 ~ :..:b'.- feee.,
- " . g
- A
I =@ -GDS-Sim I ~
I 000..’ 0”.’0. o GHN I 0.8 '
[%0 leeeGPUTN [2 5 8 11 14 17 20 23 26 29 32
: 1.15 e, = : Nodes
O 2 . .
| Z 0. 40— " £ 64MB Reduction (strong scaling)
a I T (] @) ° m |
= o 8§ 2 | L5 _
Q) 2 Meo===g o-=_¢ o e S 14 Voo QmCPY BHDN GDS-Sim BGHN mGPU-TN
> - oy '
ol 3 \ R % l -§_13 __
(- ' 3 ‘ = | o
ol © R R E e | | | M B — -
e70) (]
801 105 bt T S - DR e o ([DS | SE——
(a8 : _ ®. : 'i_)' 1t
I e, |
| \O\o 1 :
: 1 ® L 0.8 | | |
: 16 64 256 1024 : AlexNet AN4LSTM CIFAR Large Synth MNIST MNIST
Conv Hidden
| Local 2D Grid Size (N X N) : . _ o
I : :
! 2D Jacobi Stencil | Machine Learning Training Phase

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
& Electrical and Computer

Engineering

Outline

= Introduction
= Contribution 2: Command Processor Networking
= Contribution 3: GPU Triggered Networking

= Conclusion

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Conclusion Engineering

Summary

Presented 3 enhancements to improve GPU networking

Extended Task Queuing
Direct NIC-to-GPU active messaging

Command Processor Networking

Dynamic communication using on-chip GPU Command Processor

GPU Triggered Networking
Initiate messages without critical path CPU

Michael LeBeane — PhD Defense 07/16/2018

Conclusion

Extended Task Queuing (XTQ) Summary

XTQ allows direct access to remote GPU gueues

Teach NICs how to speak with HSA queues

Enables Active Messaging without target CPU involvement

Improves latency and frees CPU service thread(s)

Improves application performance by ~15%

The University of Texas at Austin
Electrical and Computer

Engineering

Initiator Target
cPu_, GPU XTQ NIC ,—""'_--"JL\XTQNIC GPU CPU
Cachey Cache Cache I': 1 _Cache *Cache Cache
: /L ‘\ ,/l
Ve (e xe3rHreron

M. LeBeane, B. Potter, A. Pan, A. Dutu, V. Agarwala, W. Lee, D. Majeti, B. Ghimire, E. Van Tassell, S. Wasmundt, B. Benton, M. Breternitz, M. L. Chu, M. Thottethodi, L. K. John, and S. K. Reinhardt, \Extended task queuing: active
messages for heterogeneous systems," in Proc. of the Intl. Conf. for High Performance Computing, Networking, Storage and Analysis (SC), 2016.

Michael LeBeane — PhD Defense

07/16/2018

- The University X in
Elecmcal and Computer

Conclusion Engineering

Command Processor Networking (ComP-Net) Summary

[FEEE_—_—_—_—_______—_——_—_—_—_—_—_——_——_—_—mmmmmmmmmmmm == 1
o : Memory NG :
Uses b_U|It In CP to support network ! @ @--___:_____-:__:_J__, !
operations ! Network Qufeues [pcie]
. I | Host I __P 1
CP/GPU communicate over shared L2 st lEpCanS i
cache instead of PCle | T |
_ e I W e tE GPU Host |
Potentially much faster (lower latency) 1| {Memery AN /’ . !
than other GHN designs | OO &> Networklng i
" Host Queues :
Scales naturally I |
Every GPU has multiple CP threads i“; ------------------ E ""I-:;"N- ------- i

! Host |
Improves application performance ~20% i _ ipae om et i
vs other GHN approaches 1 1.GPU | J@ I
L2 Cache_| L NIc_4 !

Host Queues _________.}

I
I I
I .

Memory____i PCle "
: Network Queues @ @ 1
| I

M. LeBeane, K. Hamidouche, B. Benton, M. Breternitz, S. K. Reinhardt, and L. K. John, “ComP-Net: Command
Processor Networking for Efficient Intra-kernel Communications on GPUs," in Proc. of the Intl. Conf Parallel
Architectures and Compilation Techniques (PACT), 2018.

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Conclusion Engineering

GPU Triggered Networking (GPU-TN) Summary

: -Dri i Put
CPU creates network operation off N|C|Host|3r:venNetworkmg | dl}.uhul .. o
- L Wait S L Wait D
the critical path L A e L S - |
GPU | Kernel | | Kernel I

Registers with the NIC

GPU simply ‘triggers’ operation

when the data is ready cpy Claumchl ___ Wat | HN Wait O e
Provides intra-kernel GPU GPU | Kernel [Seng{ [

networking without requiring a CPU

thread NIG....GPU Triggered Networking @ @ @@ B et
Improves application performance cpy [launchiSend] =~~~ o,

~20% vs GPUDirect Async GPU | Kernel |

M. LeBeane, K Hamidouche, B. Benton, M. Breternitz, S. K. Reinhardt, and L. K. John, “GPU Triggered Networking for Intra-Kernel
Communications,”in Intl. Conf. for High Performance Computing, Networking, Storage and Analysis (SC), 2017.

07/16/2018

Michael LeBeane — PhD Defense

The University of Texas at Austin
Electrical and Computer

Conclusion Engineering

Towards the Future.....

This dissertation motivates the need for more independent accelerators
Cannot funnel everything through a central CPU!

Concepts are applicable to many types of accelerators and networks

Still much to do!

Application Redesign Opportunities

Applications presented in this dissertation are scratching the surface
Algorithms with dynamic communication could significantly benefit from these technigues

Leveraging Emerging NIC Technologies for GPUs

Mellanox BlueField, collective offload, programmable message handlers
How could more intelligent NICs assist with GPU networking?

Michael LeBeane — PhD Defense 07/16/2018

Engineering

Thank You!

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austi

Electrical and Computer

Engineering

Host-Driven Networking (HDN)

CPU controls networking
through driver/runtime

Messages sent at kernel
boundaries

Research implementations
Include:
CUDA-Aware MPI [Kraus ‘14]

CUDA-Aware OpenSHMEM
[Hamidouche '16]

GPUDirect RDMA [Mellanox ‘“13]

Michael LeBeane — PhD Defense

NIC....Host-Driven Networking . L= | e
cpu | Launch | Wait | Send [Launch | Wait Done |
............................... \K /l\“)l
GPU | Kernel | | Kernel [

J. Kraus. “Introduction to CUDA-aware MPI and Nvidia GPUDirect,” GPU Tech. Conference. 2014.

K. Hamidouche, A. Venkatesh, A. A. Awan, H. Subramoni, C.H. Chu, and D. K. Panda, “CUDA-Aware OpenSHMEM,” Journal on Parallel Computing.
2016.

Mellanox, “Mellanox GPUDirect RDMA User Manual,” http://www.mellanox.com/related-docs/prod_software/Mellanox GPUDirect User Manual
v1.2.pdf. 2015

07/16/2018

The University of Texas at Austin
Electrical and Computer

Engineering

GPU Native Networking (GNN)

53

GPU runs networking stack

Persistent kernels and LDS
memory used for network
data structures

Research implementations
Include:

GPUrdma [Daoud '16]
IBV on GPUs [Oden ‘14]

Michael LeBeane — PhD Defense

NIC......Host:Driven Networking. e
cpu | Launch | Wait | Send [Launch | Wait)'I Done |
------------------------------- N EEEsEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE ------------------------------N-------------------uuu---uuuuu EasssssssEsEEEEEEEEEn
GPU | Kernel | | Kernel [

GPU | Kernel [Send [

F. Daoud, A. Watad, and M. Silberstein, “GPUrdma: GPU-side Library for High Performance Networking from GPU Kernels,” In Intl. Workshop on
Runtime and Operating Systems for Supercomputers (ROSS). 2016.

L. Oden, H. Froning, and F. J. Pfreundt, “Infiniband-Verbs on GPU: A Case Study of Controlling an Infiniband Network Device from the GPU,” In
Intl. Conf. on Parallel Distributed Processing Symposium Workshops (IPDPSW). 2014.

02/27/2017

The University of Texas at Austin
Electrical and Computer

Engineering

GPU Architecture and Terminology

AMD <=> Nvidia Translator

' -
| I
: | l | [:
Work-item = Thread - : | I
I Compute Unit Command :
Wavefront (64 Threads) = Warp (32 Threads) : : Lolcal Data Shalre : Processor I
. . | 1
Unit of thread dispatch [sivp SIMD SIMD SIMD CPU Core :
i = I I I I I I - |
Work-group = Thread Block | e T cache 1LF :
Unit of Synchronization ! 1 1 I
I L2 Cache :
— | 1 1 1 1 1 1 1
Local Data Share (LDS) = Shared Memory ! GPU Memory :
Work-group scratchpad o e e e e e e e e e e e e 1
Compute Unit (CU) = Streaming Multi-Processor (SM) : Kernel
Collection of SIMD engines sharing LDS and L1 cache : GPU SIMT Function
I
: Command Processor (CP)
: Dispatch engine and scheduler
1
I

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Engineering

GPU-TN Kernel Programming Interface

Work-item Level Work-group Level Kernel Level

kernel void
ern3(global char *trigAddr,
const int tag,
__global void *buffer)

___kernel void

kernl(global char *trigAddr,
const int tagBase,
__global void *buffer)

o

ern2(_ global char *trigAddr,
const int tagBase,
__global void *buffer)

[§
: Ly 1z i
I i ¥ I
I 1 1! I
I ! ! I
I i ¥ i
| Ly 1z i
I ¥ ¥ :
={ =={ =={ I
! // do work |1 // do work |1 // do work |
| buffer = ...; libuffer = ...; libuffer = ...; '
I ’ |I ’ |I ’ |
l int id = get global id():; :=wg_barrier(); ==wg_barrier(); :
| *trigAddr = tagBase + id; ::if ('get local id()) { ::if ('get local id()) i
| // do additional work i: int id = get group id():; :: *trigAddr = tag; !
... :: *trigAddr = tagBase + id; i:// do additional work :

I [[
1} 1y } ... I
I I I
b e i// do additional work ==}]
T Ve Ve S S 3

... I

, I

I

L e .'

Michael LeBeane — PhD Defense 07/16/2018

e Universi
&/ Electrica

Engineering

Simulation Infrastructure

GPU CPU_

NIC

w IF NIC Processors
DMA Engines

gem5 + AMD GCN3 GPU model + Custom Portals4 NIC Model

CPU power model with McPAT
Baseline model is coherent APU

Directory

Controllers

dGPU modeled with extra delay for IO bus, different memory controllers, and by disabling coherence probes
Each section has slightly different parameters

Will be discussed before results presented

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Engineering

Remote Direct Memory Access (RDMA)

RDMA allows for direct access of remote memory without involving CPU
Heavy lifting is performed on the NIC (off-load networking model)

Generally expressed in terms of remote Put/Get operations

Maps naturally to “one-sided” communication semantics

Puts/Gets vs. Send/Receive

Initiator Target
CPU Memory Memory
(OG5 SN ———— S ————m e 10C CPU
Cache I, NIC NIC Cache
i Network 1
¥ v
Memory Memory

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Engineering

ComP-Net Host and GPU API

Host Code GPU Code

| __host void E:__device__ void i
hostInit () { :=Ping(cpnet_handle_t *cpnet handle, :
| //Initialize ComP-Net :: char* wg buffer) ({ :
i cpnet handle t* cpnet handle; :E // Extract context from global handle :
: cpnet init (&cpnet handle, GRID Sz / WG SZ); i: __shared cpnet ctx t cpnet ctx; |
! // Allocate symmetric heap memory :: cpnet ctx create(cpnet handle, i
: char* buf = cpnet shmalloc(sizeof(char) * :: cpnet ctx); !
: GRID Sz / WG _SZ); :: // Each WG pings target !
I //Initiator/target launches kernel Il cpnet_shmem char_ p(cpnet_ctx, :
: if (cpnet handle->pe == INITIATOR) { :: wg buffer[hipBlockIdx x], :
: hipLaunchKernel (Ping, GRID SZ, GRID SZ / ! 1, TARGET) ; !
E WG sz, 0, O, cpnet handle, :i // Each WG waits for pong target :
! buf) ; :: cpnet shmem char wait until (:
! } else { /* Launch target kernel. */ } :: wg buffer[hipBlockIdx x, 1); :
1} 1 cpnet ctx destroy(cpnet ctx); :
e Ay T - :

e o o B .

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Engineering

Latency Microbenchmark

O Kernel Launch OKernel Exeuction OKernel Teardown B@Put @ Wait

GPU-TN _Irnitiator e 79 |
arget i
Initiator 5 = | 5 T3 5 L ~0.05
GDS-Sim : ’
Torget i i i i i i i 0:30
Initiator = - ' : i _ - .
HDN Target
| | | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (us)
@ e - - - - -

One-sided put latency benchmark Smaller is Better

Initiator launches dummy kernel, executes network command, and terminates

Target polls on put location

Take-away messages
HDN < GDS-Sim < GPU-TN
GPU-TN actually overlaps kernel teardown with network transfer!

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer
Engineering

Microbenchmarks
o @» CoOmP-Net =a=dGPU =l=APU e @ ComP-Net ===dGPU -H -APU e @» ComP-Net =aA=dGPU =-l=APU
_ 12 . 100 - 12
g 2 =
E 10 2 80 % 1 A A A . NREEEEEE
O O 5
S 8 5 ST St S S ST SR
= = 60 =
S > B 06 foomeee e
» g2
S 4 S | 2804 | -
(<5} <5} o] -
£ A £ z -
; 2 -a-A lol-lll'm.*. -------- E 20 2 02 ---0.-; ----------------------------------
8 g S R YXXEXEEKX |
S 0 : : : ‘g 0 P 0
SE:’ 1 8 64 512 4096 32768 ks o 0 2 4 6 8 10
Network Payload Size Number of Network Service Threads - Number of Network Service Threads
Sweep of payload size for 1 WG Sweep of threads for 1 byte transfers and 480 WGs

and 1 Thread

Michael LeBeane — PhD Defense 07/16/2018

The University of Texas at Austin
Electrical and Computer

Engineering

Where are GPUs heading? Tightly Coupled Devices
CPU GPU
(Producer) (Consumer)
i i i i Command
Friendlier programming abstractions b \.-
Nicer abstractions in CUDA and OpenCL k
Dynamic Parallelism, Unified Memory, etc. Virtual ymand Queue
Single-source, kernel-less programming support Memory
C++ AMP, OpenMP, AMD HC Language, etc. Architected Queuing

Architectural Support

Tightly Coupled Devices

User-level kernel-launch

-~
~
~

Shared virtual address space

Virtualization

Multiprocessing

(Sometimes) Coherent caches

Physical Memory

What about networking support? Shared Virtual Memory

Michael LeBeane — PhD Defense 07/16/2018

