
Extended Task Queuing:
Active Messages for Heterogeneous Systems

Michael LeBeane∗†, Brandon Potter†, Abhisek Pan†, Alexandru Dutu†, Vinay Agarwala†, Wonchan Lee‡,
Deepak Majeti§, Bibek Ghimire‖, Eric Van Tassell†, Samuel Wasmundt¶, Brad Benton†,

Mauricio Breternitz†, Michael L. Chu†, Mithuna Thottethodi∗∗, Lizy K. John∗, Steven K. Reinhardt†

∗University of Texas at Austin ‡Stanford University ¶University of California, San Diego
{mlebeane, ljohn}@utexas.com wonchan@cs.standford.com wasmundt@eng.ucsd.edu

‖Louisiana State University §HPE Vertica ∗∗Purdue University
gbibek@gmail.com deepak.majeti@hpe.com mithuna@purdue.edu

†Advanced Micro Devices, Inc.
{Michael.Lebeane, Brandon.Potter, Abhisek.Pan, Alexandru.Dutu, Vinay.Agarwala,

Eric.Vantassell, Brad.Benton, Mauricio.Breternitz, Mike.Chu, Steve.Reinhardt}@amd.com

Abstract—Accelerators have emerged as an important compo-
nent of modern cloud, datacenter, and HPC computing environ-
ments. However, launching tasks on remote accelerators across
a network remains unwieldy, forcing programmers to send data
in large chunks to amortize the transfer and launch overhead.
By combining advances in intra-node accelerator unification with
one-sided Remote Direct Memory Access (RDMA) communica-
tion primitives, it is possible to efficiently implement lightweight
tasking across distributed-memory systems.

This paper introduces Extended Task Queuing (XTQ), an
RDMA-based active messaging mechanism for accelerators in
distributed-memory systems. XTQ’s direct NIC-to-accelerator
communication decreases inter-node GPU task launch latency
by 10-15% for small-to-medium sized messages and ameliorates
CPU message servicing overheads. These benefits are shown in
the context of MPI accumulate, reduce, and allreduce operations
with up to 64 nodes. Finally, we illustrate how XTQ can
improve the performance of popular deep learning workloads
implemented in the Computational Network Toolkit (CNTK).

Index Terms—Accelerator architectures, Computer architec-
ture, Computer networks, Distributed computing, Network in-
terfaces.

I. INTRODUCTION

Accelerators have emerged as ubiquitous components of
many datacenter, cloud computing, and HPC ecosystems [1–
3]. At the time of this writing, over 100 of the top 500
supercomputers use accelerators [4], typically GPUs or Intel
Xeon Phi co-processors [5]. Similarly, Amazon offers GPU-
enabled nodes as part of their virtualized Elastic Compute
Cloud service [6]. However, despite widespread adoption, ac-
celerators are traditionally deployed as peripheral components
that must marshal data to and from main memory at the
directive of a kernel driver.

Many of the major heterogeneous platform providers are
striving to incorporate accelerators more tightly into a node’s

compute ecosystem [7–10]. Most of the major hardware
vendors offer a number of standardized features that enable
accelerators to participate in computation as peers to the
host CPU. These features typically include user-mode task
invocation, shared virtual memory with a well-defined mem-
ory consistency model, shared-memory-based synchronization,
and accelerator context switching. We refer to frameworks that
implement the above features at a node level as tightly coupled
compute ecosystems.

Eliminating data copies and privileged device-driver opera-
tions from the critical path has helped tightly coupled architec-
tures drive down kernel launch latencies from approximately
30µs for a high-performance discrete GPU to less than 7µs for
a device such as AMD’s A10-7850K Accelerated Processing
Unit (APU) [11]. Low-overhead kernel launches and data-copy
elimination have the potential to change how applications use
accelerators. Tasks that previously were too small to amortize
dispatch and data movement costs will begin to benefit from
accelerator offload. We expect these trends to continue, as
kernel launch latency is of paramount importance to chip
designers [8, 12] and researchers [13, 14].

While node-level, tightly coupled frameworks remove data
copies and heavyweight driver invocations for intra-node ac-
celerators, Network Interface Controllers (NICs) with Remote
Direct Memory Access (RDMA) offer these same benefits
for inter-node data transfers. RDMA-capable NICs and fab-
rics [15–19] move data from one node to another without in-
volving the target-node CPU by enabling the target-node NIC
to perform DMA directly to and from application memory.

This paper introduces NIC primitives which combine
RDMA with tightly coupled, user-level task queuing. These
primitives enable applications to efficiently enqueue tasks on
any compute device in a distributed-memory system, without
involving the target-node CPU or the operating system on ei-SC16; Salt Lake City, Utah, USA; November 2016

978-1-4673-8815-3/16$31.00 c©2016 IEEE

NIC
Cache Cache

CPU
Cache

Memory

Initiator Target

NIC
CacheCache

CPU
Cache

Memory

CPU
CacheMemory

NIC Memory

Network

Network

Network

IOCCPU
Cache Memory

NICMemory

AcceleratorIOC

CacheCache
CPU

Cache

Memory

Cache Cache
CPU

Cache

Memory

XTQ NIC XTQ NIC

Accelerator

Accelerator Accelerator

Accelerator Accelerator

Memory Memory

(a) Conventional heterogeneous systems

NIC
Cache Cache

CPU
Cache

Memory

Initiator Target

NIC
CacheCache

CPU
Cache

Memory

CPU
CacheMemory

NIC Memory

Network

Network

Network

IOCCPU
Cache Memory

NICMemory

AcceleratorIOC

CacheCache
CPU

Cache

Memory

Cache Cache
CPU

Cache

Memory

XTQ NIC XTQ NIC

Accelerator

Accelerator Accelerator

Accelerator Accelerator

Memory Memory

(b) Tightly coupled heterogeneous systems

NIC
Cache Cache

CPU
Cache

Memory

Initiator Target

NIC
CacheCache

CPU
Cache

Memory

CPU
CacheMemory

NIC Memory

Network

Network

Network

IOCCPU
Cache Memory

NICMemory

AcceleratorIOC

CacheCache
CPU

Cache

Memory

Cache Cache
CPU

Cache

Memory

XTQ NIC XTQ NIC

Accelerator

Accelerator Accelerator

Accelerator Accelerator

Memory Memory

(c) XTQ-enabled, tightly coupled heterogeneous systems

Fig. 1. Remote task enqueue control path on different heterogeneous,
distributed-memory systems.

ther the initiator or the target node. We call this mechanism Ex-
tended Task Queuing (XTQ), since it extends the lightweight,
user-mode task queuing in modern shared-memory platforms
across distributed memory systems. XTQ offers a novel, highly
efficient active messaging [20] platform for accelerators that
improves upon the state of the art.

Figure 1 shows the control path of a point-to-point remote
task invocation implemented on three types of systems. In
these examples, a CPU on the initiator node schedules work
on a remote accelerator. In a conventional heterogeneous node,
the communication flow is similar to Figure 1a. The initiator
CPU uses a high-performance NIC sitting on an I/O bus to
transfer the task and associated data to the target via RDMA.
While emerging technologies such as NVIDIA’s GPUDirect
RDMA [21] allow for NICs to transfer data directly to a
GPU’s onboard memory, launching a kernel still requires the
intervention of the target CPU’s runtime and kernel driver.

Figure 1b shows the same operation implemented on a con-
temporary, tightly coupled SoC. The CPU and the accelerator
share the same memory, obviating the need to transfer data
from the target’s main memory to the accelerator’s local device
memory. However, the target-side CPU must still service the
request from the NIC and explicitly schedule work on its local
accelerator.

XTQ provides a mechanism enabling the direct CPU-to-
accelerator communication presented in Figure 1c. Our scheme
enables tightly integrated accelerators to efficiently and di-
rectly communicate with each other through a customized
hardware NIC. The target-side NIC participates in a tightly
coupled queuing model and can directly schedule work to the
accelerator, completely eliminating the CPU communication
path in Figure 1b.

Directly interfacing an intra-node tasking framework with
inter-node RDMA through XTQ offers a number of benefits,
including:

• A unified active messaging framework for all compute
devices in the system. By leveraging the user-mode task
invocation of tightly coupled systems, it is possible to
design an active messaging framework that uses the same
interface to spawn remote tasks on any device (CPU, GPU,
FPGA, Processor-in-Memory (PIM), etc.) in the system.
Unified active messaging offers exciting new acceleration
possibilities for future applications and runtime libraries.

• A reduction in remote accelerator task launch la-
tency. RDMA provides the means for low-latency, CPU-
less data transfer without redundant data copies. Tightly
coupled architectures provide the means for lightweight,
direct accelerator-to-accelerator communication within a
shared-memory node. By marrying the two, a target-side
NIC can schedule work directly on a local accelerator
without critical-path software on the CPU. Bypassing the
CPU decreases accelerator launch latency and opens up
the possibility of fine-grained remote tasking models for
accelerators.

• Removal of message processing and task launch over-
heads on the target CPU. Message progress threads can
impose a significant overhead in distributed systems [22].
This problem is exacerbated when the progress thread not
only has to handle messages, but also construct command
packets and schedule work on accelerators. Direct NIC-to-
accelerator task invocation frees the CPU to either perform
more useful computation or to enter a low power state.

This paper provides an overview of an XTQ-enabled, tightly
coupled system architecture. Our exploration of XTQ is orga-
nized into the following three topics:

• The NIC hardware design. We illustrate that cross-node
heterogeneous integration can be achieved with the addition
of a small amount of hardware to an RDMA-capable NIC.

• Programming via lightweight extensions to an RDMA-
capable host API. We implement the XTQ remote tasking
primitive as a simple extension to a generic RDMA network
programming interface. This API extension leverages one-
sided communication semantics to allow programmers to
schedule active messages on any computing device in the
cluster. We illustrate that it is easy to express XTQ task
invocations using only a few API calls.

• Performance on a number of important primitive op-
erations and machine learning applications. We illus-
trate that XTQ can improve GPU-bound active message
performance by 10-15% over non-XTQ enhanced messages,
while eliminating message and task enqueue overheads on
the target-side CPU. We present latency decompositions for
important steps in the XTQ task flow and show performance
improvements for microbenchmarks. We show that XTQ
can enhance important MPI primitives such as accumulate,
reduce, and allreduce operations, and that XTQ benefits
scale as the number of nodes increases for a fixed problem
size. Finally, we illustrate the real-world impact of XTQ on
distributed deep learning workloads implemented using the
Computational Network Toolkit (CNTK) [23].

II. BACKGROUND

In this section, we discuss the concepts, trends, and recent
advances on which XTQ is built.

A. Intra-node Accelerator Integration

Modern system designs are increasingly providing tighter
coupling between CPUs, GPUs, and other accelerators. There
are a number of recent frameworks offering varying features
and levels of support [7–10]. XTQ-like active messaging
can be implemented on many tightly coupled, node-level
architectures. However, it is helpful to explain this work in the
context of an existing industry standard. For the remainder of
the paper, we will use the Heterogeneous System Architecture
(HSA) [8] as our prototypical example of a tightly coupled
architecture. HSA is an open industry standard from the HSA
Foundation, a consortium formed by AMD, ARM R©, Imagi-
nation Technologies, MediaTek, Texas Instruments, Samsung
Electronics, Qualcomm, and others with the objective of help-
ing system designers integrate different kinds of computing
elements (e.g., CPUs and GPUs) to enable efficient data
sharing and work dispatch. Some important features of the
HSA specification are illustrated in Figure 2 and are described
in the following paragraphs.

User-Level Command Queuing: In HSA, applications
allocate accelerator task queues in user memory. Devices fetch
and execute tasks directly out of these queues, thereby elim-
inating OS kernel transitions and device-driver overheads on
common paths. Figure 2a illustrates HSA user-level command
queuing. User-mode queues are arranged as circular buffers,
with the read and write pointers implemented as monotonically
increasing indices. The queue entry format is defined by HSA’s
Architected Queuing Language (AQL). AQL packets contain
all the information needed to launch and synchronize a GPU
kernel or CPU function.

Shared Virtual Memory: HSA requires that devices access
memory using the same virtual addresses seen by the appli-
cation program. This feature is necessary to allow users to
pass pointers directly to devices through the HSA task queues
without device driver intervention or validation. Devices must
also be capable of initiating page faults to avoid the overhead
of pinning pages in memory. Shared translations can be
provided to devices by an IOMMU that references the same
page tables as the host CPUs [24,25], as shown in Figure 2b.

Shared-Memory Synchronization: HSA uses memory-
based signal objects for synchronization. Processes indicate
to a device that work has been placed in its command queue
using a doorbell signal associated with the queue. The doorbell
signal can map to a memory-mapped device range (e.g., for a
firmware- or hardware-dispatched device such as a GPU), or
to a shared-memory location (on which a software-dispatched
device such as a CPU can poll). Devices or threads can also
wait on tasks to finish using completion signals.

While HSA improves programmability and task invoca-
tion in a shared-memory environment, distributed-memory
setups cannot naturally leverage these features. Through XTQ,

MMU

CPU
(Producer)

Tightly Coupled Devices

Virtual
Memory

Command
Queue

Accelerator
(Consumer)

Command
Packet

CPU

Tightly Coupled Devices

Physical Memory

AcceleratorOS

Driver
IOMMU

(a) HSA tasking model.

MMU

CPU
(Producer)

Tightly Coupled Devices

Virtual
Memory

Command
Queue

Accelerator
(Consumer)

Command
Packet

CPU

Tightly Coupled Devices

Physical Memory

AcceleratorOS

Driver
IOMMU

(b) Shared virtual memory.

Fig. 2. Intra-node accelerator integration in HSA.

distributed-memory applications are able to directly interface
with the intra-node HSA tasking model.

B. Inter-node RDMA frameworks

Modern high-performance clusters employ RDMA adap-
tors for lightweight and efficient inter-node data movement.
RDMA protocols expose connections directly to user-level
applications, enabling data movement without involving the
operating system or target-side processor. High-speed RDMA
fabrics are increasingly available on commodity systems.
Technologies such as InfiniBandTM [15], iWARP [19], and
RDMA over Converged Ethernet (RoCE) [18] enable these
systems to scale to thousands of nodes. Current technologies
can reliably provide read latencies as low as 1.19µs [26],
with emerging network technologies promising less than 100ns
network latency per hop [16,27]. RDMA technology provides
the communication infrastructure for XTQ to implement het-
erogeneous tasking across nodes. XTQ is built on a generic
remote Put operation and can be easily integrated into any
RDMA transport layer exposing one-sided communication
semantics.

While XTQ can be added to any RDMA transport, we use
Portals 4 [17] as the framework of reference when explaining
XTQ in the context of an existing network transport layer. Por-
tals 4 is a connectionless low-level network API designed to
support the Message Passing Interface (MPI) [28] and various
partitioned global address space (PGAS) languages [29, 30].
It is agnostic to the underlying fabric and exposes both flow-
control and RDMA data transfer to higher-level applications
and libraries.

III. XTQ ARCHITECTURE

This section illustrates the main components of the XTQ
hardware architecture. XTQ introduces one basic primitive to
an RDMA-capable NIC: direct, user-mode task invocation on a
remote accelerator. The lightweight hardware that implements
this operation is described in the following paragraphs. For the
purposes of our exploration of XTQ, we will refer specifically
to a system with tightly coupled CPU and GPU. However, the
same scheme is generalizable to other accelerators in a tightly
coupled system architecture.

A. XTQ Message Format

Figure 3 illustrates the main components of a typical XTQ
message along with the AQL-like [8] command packet formats
for CPU and GPU tasks. For GPU tasks, the command packet

Group Seg Size

Grid Z

Private Seg Size

Data Payload

Kernel Arguments

AQL Packet
O

p
ti

o
n

al
 /

V
ar

ia
b

le
 L

en
gt

h

Kernel Object

Grid X

Kernel Argument Address

Grid Y

Reserved

Completion Signal

OR

GPU AQL Packet

Header WG X WG Y

WG Z Reserved

Dispatch

CPU AQL Packet

64 Bits

6
4

 B
yte

sArgument 2

Return Address

Argument 3

Argument 0
Argument 1

Reserved

Completion Signal

Header ReservedType

Typical XTQ Message

64 Bits

...

Fig. 3. XTQ message format.

CPUAccelerator
Tightly Coupled Devices

XTQ NIC
Doorbell

2

1

3

Data

Command Queue

Rewrite

54

Virtual Memory

Fig. 4. Target side steps in XtqPut operation.

contains all the information needed to launch a kernel, such
as a pointer to the kernel code object, a pointer to the
kernel arguments, and workitem/workgroup sizes. Variable-
sized kernel arguments are appended to the message at the end
of the command packet. For CPU tasks, the command packet
contains fields such as a function pointer and embedded scalar
arguments.

After the command packet and kernel arguments is a
variable-size payload. This payload is generally a task input
buffer provided by the initiator, but there are no specific
requirements for its usage. Our API and NIC consume two
separate pointers for the command packet/kernel argument
combination and the payload. The NIC performs a gather
operation on the two buffers before transmitting to the target.
Gathering the payload and command packet separately avoids
an unnecessary memory copy in the application code.

B. XTQ Put Overview

This section illustrates the steps involved for a CPU to
schedule a unit of work on a remote GPU. The first step in
a remote task invocation is for the initiator’s CPU to enqueue
one or more remote XtqPut operations on the NIC’s command
queue. The NIC’s software interface is provided pointers to
two distinct memory buffers: one for the command packet
and kernel/function arguments and one for the optional data
payload. The host library notifies the NIC of the local memory
buffers through a shared command queue and doorbell mech-
anism. The NIC then performs a local gather operation and
transfers data over the network.

Figure 4 illustrates the steps involved in queuing a task on
the target GPU from the NIC. First, the target NIC receives the

XTQ message from the network. The payload portion of the
message is streamed directly into the receive buffer in main
memory 1 . The NIC also extracts the command packet from
the message and performs the rewriting services described
in Section III-C. Before enqueuing the packet, the NIC first
accesses the command queue descriptor. If the queue is full,
then the NIC triggers the flow control mechanism discussed
later. Otherwise, the rewritten command packet is enqueued
to the target GPU’s command queue 2 . After the payload
write and command enqueue is completed, the NIC writes the
command queue index to the GPU’s memory-mapped doorbell
register 3 . In our configuration, the GPU contains a Command
Processor (CP), which is responsible for reading packets from
the command queue when the doorbell is updated with the
newest write index. The CP proceeds to dequeue the packet
from its command queue 4 , decodes the launch parameters,
and schedules the work on the GPU’s compute threads. The
GPU threads then perform global load and store operations to
access the kernel arguments and payload data 5 . Optionally,
the GPU can notify the local CPU of kernel completion using
a shared-memory signal (not shown).

It is important to note that all of the node-local operations
take place in a unified virtual memory environment. The
pointer addresses used for the command queue and data buffer
are virtual addresses. In our scheme it is assumed that both the
NIC and GPU will have access to an IOMMU as described in
Section II-A.

Security and process isolation are critical concerns for
distributed, multi-process workloads. For the XTQ extensions,
the security concerns are handled by the underlying transport
layer. As an example, the Portals 4 network programming API
provides clear semantics to guarantee isolation of its own per-
process data structures. An XTQ extension to the Portals 4
framework would inherit these same security mechanisms to
protect its task queues and other auxiliary data structures.

A similar argument exists for flow control. XTQ utilizes
shared-memory queues as the interface between the NIC and
the GPU, which can become full. XTQ can utilize any existing
hardware transport-level flow-control mechanism. In our con-
tinuing example with Portals 4, the philosophy is to provide
building blocks for a higher software layer to implement
arbitrarily sophisticated policies. Portals 4 can identify when
target-side resources are full and generate events to notify
the initiator or target that a message was not successfully

Global Virtual
Memory...

Kernel Object Ptr
Kernel Arguments Ptr

Data Payload

.....

Kernel Arguments

RDMA Header ...
Completion Signal Ptr

Kernel Object Ptr
Kernel Arguments Ptr

Data Payload

.....

Kernel Arguments

Arg0
Arg1

Kernel Image

Target Side
Buffer

Completion Signal Ptr HSA Signal

Kernel Lookup
Table

Kernel Lookup Table
Base Address Register

Target PID

Kernel Index

....

....

Initiator Target

 𝑥

Fig. 5. Target-side XTQ rewrite semantics.

delivered. The same monitoring and messaging facilities are
used for the XTQ extension to Portals 4.

C. XTQ Rewrite Semantics

One issue with remote task invocation is that the initiator
is unaware of the addresses of important resources which are
dynamically allocated by the target. Some examples are target-
resident kernel input/output buffers, completion signals, and
the GPU’s command queue. One simple way to solve this
issue is to broadcast the virtual addresses of all dynamically
allocated data needed for task execution. However, it is costly
for initiators to keep track of resource descriptors for thou-
sands of possible target nodes; this scenario is particularly
germane in scenarios when resources are frequently allocated
and deallocated during program execution.

XTQ solves this problem by leveraging coordinated indices
to refer to all target-resident data. The initiator populates the
command packet with these indices, and the target performs
a translation from an index to the correct target-local virtual
address. Therefore, the initiator does not need to store any
target address information, and the target only needs to keep
index translations for its own resident data. Since one of the
design goals is to avoid invoking the CPU on tasks that are not
specifically destined for it, the XTQ framework incorporates
the logic to substitute virtual addresses into the target-side
NIC. We will describe the semantics of this “XTQ rewrite”
operation in detail for both CPU and GPU bound tasks.
We use the term “rewrite” as opposed to the arguably more
accurate term “translation” to avoid confusion with virtual
to physical address translations which occur during device
IOMMU accesses.

1) Lookup Tables: The NIC manages a number of per-
process lookup tables to hold the index-to-virtual address
rewrites needed for the NIC to enqueue tasks on a compute
device. There are three different types of lookup tables: the
Kernel Lookup Table, Function Lookup Table, and Queue
Lookup Table. Every XTQ packet will perform one lookup
in either the Kernel or Function Lookup Table depending on
the type of the packet. Additionally, all messages will trigger a
lookup in the Queue Lookup Table to extract the base pointer
of the target command queue. The entries in the lookup tables
are populated by the host CPU using the XTQ API described
in Section IV.

One lookup table entry is needed for each function, kernel,
and queue that wishes to participate in XTQ’s direct NIC-to-
compute device tasking. For the applications and microbench-
marks that we studied, 64 kernel and function registrations
were sufficient, producing Kernel and Function Lookup Tables
that are around 4KB per process. For a small number of nodes,
these data structures can be resident on dedicated tables on the
NIC. For larger numbers of nodes, these tables would need to
reside in DRAM. In this case, the NIC can implement an on-
chip cache to ensure low-latency access to frequently used
table entries.

2) Rewrite Procedure: Figure 5 shows how the NIC se-
lectively replaces certain fields in a GPU AQL packet. The
initiator places a lookup table index in the field reserved for the
kernel object pointer. The target NIC uses this index to offset
into the Kernel Lookup Table to replace the kernel pointer
with the correct value in the target’s virtual address space. The
actual kernel arguments are aligned directly after the command
packet in the receive buffer. XTQ replaces the kernel argument
pointer in the command packet with the address at which the
kernel arguments will be written to memory. Finally, the first
two kernel arguments are replaced with a pointer to a pre-
registered target side buffer and the initiator-provided data
payload, respectively. A pointer table can be registered instead
of a target-side buffer if more registrations are needed. Kernel
Lookup Table entries also contain room for the registration
of a target-resident, shared-memory completion signal. When
the GPU finishes execution of a task, this completion signal
is decremented by the CP to let other agents efficiently wait
for the task to complete. XTQ replaces the command packet
completion signal entry with the completion signal registered
in the Kernel Lookup Table if it is valid. The rest of the fields
are passed through as they are received and are assumed to be
properly populated by the initiator.

A similar rewrite procedure is performed for CPU tasks.
For CPU tasks, the NIC references the Function Lookup Table
instead of the Kernel Lookup Table. The primary difference
is that the first four function arguments are embedded directly
in the AQL packet.

Finally, the NIC must identify in which of many possible
user-mode queues to place the AQL packet. The queue address
is extracted with one final table lookup, using an index

embedded in the AQL reserved bits to access the Queue
Lookup Table.

IV. XTQ API

The XTQ tasking framework defines an API that the host
CPU can use to schedule remote tasks on a target compute
device. This API is implemented as an extension to a generic
RDMA network programming interface that supports a remote
Put operation. The XTQ-specific extensions can be broken
down into the remote task launch function (XtqPut) and a
number of registration functions used to populate the XTQ
lookup tables.

A. XtqPut Function

XTQ contains one remote-tasking operation: XtqPut. The
XtqPut operation performs the same one-sided, RDMA data
movement operation as a basic Put operation, with additional
semantics for launching tasks on the target. The exact mech-
anism for launching tasks is described in detail in Section III.

B. XTQ Lookup Table Registration

The XTQ lookup tables are populated by the host CPU
using a registration API. The API provides three lookup table
registration functions:
• XtqRegisterFunction: Associates a lookup table index with

a function pointer and an optional target resident buffer.
• XtqRegisterKernel: Associates a lookup table index with a

kernel pointer, an optional target resident buffer, and an
optional completion signal.

• XtqRegisterQueue: Associates a lookup table index with a
command queue descriptor.
These functions are meant to be invoked using globally

known, coordinated indices. Such indices are common in
SPMD programming techniques and are already available in
distributed, multiprocess programming frameworks such as
MPI.

C. Example Program

To ground our discussion of the API, Figure 6 illustrates
a small program written in the SPMD style utilizing the
primary components of XTQ. In this example, the initiator
CPU enqueues a task on the target node’s GPU. The target-
side CPU simply waits on a shared-memory signal until the
target-side GPU has completed the task.

Both CPUs begin by initializing the RDMA communication
layer and NIC 1 . On the initiator side, the CPU allocates a
payload and creates a command packet encapsulating the task
to execute on the target 2 . In this example, the coordinated
index 42 is used to associate this command with queue, kernel,
and signal registrations at the target. This task is then supplied
to the NIC using the XtqPut operation 3 . An XtqPut triggers
the NIC to send the input data and command packet to the
target.

Meanwhile, the target CPU posts the receive buffer using
the RDMA communication layer 4 . Next, it initializes the
local accelerator runtime and creates a kernel, completion

int main(int argc, char *argv[]) {
// 1 Initialize RDMA comm layer
int rank = RdmaInit();
int index = 42;
if (rank == INITIATOR) {
// 2 Construct XTQ payload and command
void *payload = malloc(BUFFER_SIZE);
void *cmd = ConstructCmd(CMD_SIZE, 42);
// Post initialization sync with target
ExecutionBarrier();
// 3 Launch on remote GPU using XTQ
XtqPut(TARGET, cmd, CMD_SIZE,

payload, BUFFER_SIZE);
} else {
// 4 Post receive buffer
void *recv_buf = malloc(BUFFER_SIZE);
RdmaPostBuffer(recv_buf);
// 5 Initialize HSA CPU Runtime
signal_t signal;
kernel_t kernel;
queue_t queue;
TaskingInit(&signal, &kernel, &queue);
// 6 Register Kernel/Queues
XtqRegisterKernel(signal, kernel, 42);
XtqRegisterQueue(queue, 42);
// Post initialization sync with initiator
ExecutionBarrier();
// 7 Wait for GPU to complete task
SignalWait(signal);

}
}

Fig. 6. Pseudocode for XtqPut operation.

signal, and user-mode command queue 5 . The target then
registers the kernel, signal, and queue with the XTQ NIC
using the XtqRegisterKernel and XtqRegisterQueue functions
at index 42 6 . These functions populate the lookup tables
used by the target-side NIC. When the initiator’s RDMA
operation arrives at the target, the target NIC recognizes it as
an XTQ-enabled RDMA and uses the Kernel Lookup Table
and Queue Lookup Table to replace components of the packet
and select a command queue. After the RDMA operation is
complete, the NIC enqueues the packet to the GPU, which
begins execution of the kernel. Meanwhile, the target CPU
waits for the operation to complete using a shared-memory
signal 7 .

After initialization, an execution barrier is entered between
steps 2 and 3 on the initiator and steps 6 and 7 on the
target. This barrier ensures that the initiator does not send a
command to the target before the target’s lookup tables have
been populated.

In addition to illustrating the XTQ API, this example
program drives home two related contributions of the XTQ
framework. First, the NIC delivers the task descriptor directly
to the GPU without host CPU involvement, minimizing the
task launch latency for the GPU. Second, the host CPU does
not have to use any cycles servicing the network request and
scheduling the task on the GPU. In this simple example, the
target CPU waits for the GPU to complete its operation, but
in more complex workloads the CPU could be free to perform
meaningful computations.

While this example may seem primitive, it is actually possi-

TABLE I
XTQ SIMULATION CONFIGURATION.

CPU and Memory Configuration
Type 4 Wide OoO
Clock 3Ghz, 8 cores
I, D-Cache 64K, 2-way, 2 cycles
L2-Cache 2MB, 8-way, 4 cycles
L3-Cache 16MB, 16-way, 20 cycles
DRAM DDR3, 8 Channels, 800MHz

GPU Configuration
Clock 1 GHz, 24 Compute Units
Wavefronts 40 (each 64 lanes)/ oldest job first
D-Cache 16kB, 64B line, 16-way, 4 cycles
I-Cache 32kB, 64B line, 8-way, 4 cycles
L2-Cache 768kB, 64B line, 16-way, 24 cycles

Network Configuration
Switch Latency 100ns
Link Bandwidth 100Gbps
Topology Star

ble to support many features with a small amount of software
support from higher-level runtime libraries. For example, the
target can send the data to another node for further compu-
tation by issuing another XtqPut operation after the shared-
memory signal resolves. Complex, cross-node dependencies
and task graphs can be implemented using shared-memory
signals and XTQ.

V. EVALUATION

XTQ provides new opportunities to re-evaluate design deci-
sions in existing applications and to redesign communication
in emerging applications. In this section, we evaluate the
XTQ tasking model on microbenchmarks designed to expose
latencies, primitives that are intrinsic to many MPI programs,
and the CNTK deep learning framework. We illustrate that
XTQ offers significant improvements over standard remote
GPU dispatch.

A. Experimental Setup

To evaluate XTQ, we employ a simulation framework based
on the open-source gem5 simulator [31] including the AMD
public GPU compute model [32]. We have configured our
hardware to resemble a potential future server-class APU
system, with each APU containing a NIC, GPU, and CPU
cores. None of the devices share a cache, and all memory
accesses are coherent and occur in a unified virtual address
space through IOMMU technology. This system does not
suffer from the off-chip bandwidth issues [33] that plague
current integrated CPU/GPU solutions, since we expect future
high-performance chips to contain a larger number of memory
channels [34] or integrated die-stacked memory. Our infras-
tructure simulates multi-node configurations with a simple
switch and wire delay model incorporating bandwidth and
latencies configured similarly to high-performance fabrics such
as Intel Omni-Path [16]. The NIC model implements the
Portals 4 [17] network programming specification with custom
XTQ extensions implemented on top of Put operations. The
GPU tasking interface is implemented using HSA task de-
scriptors and queues. Table I shows the specific configuration
for the major components of our infrastructure.

Our simulation environment models forward-looking GPU
launch latencies. Once the CP has been notified of an available
command packet using its doorbell, it performs a read of the
command packet and then immediately schedules the kernel
when a compute unit becomes available. We believe that this
limit represents the conceptual overhead of launching a kernel,
and that real-world launch overheads will trend towards this
limit as tightly coupled frameworks continue to integrate GPUs
more closely with CPUs.

In our experiments, we compare three different remote
tasking interfaces that we will refer to as CPU, HSA, and
XTQ. These configurations are defined as follows:
• CPU: Remote tasking is accomplished by using two-sided

send/receive pairs through user-space RDMA. These results
use the application thread for message progress and active
message execution unless otherwise indicated. The CPU
configuration represents a non-GPU-accelerated system, and
is included to separate the baseline benefits of GPU accel-
eration from those of XTQ.

• HSA: HSA also uses two-sided send/receive pairs over
RDMA, but launches the active message on the GPU after
the CPU thread has received the data. The CPU commu-
nicates to the GPU through user-mode command queues.
The HSA configuration represents user-space tasking on a
tightly-coupled architecture without XTQ.

• XTQ: XTQ uses one-sided XtqPuts through user-space
RDMA to remotely enqueue active messages on the target’s
GPU. The NIC places AQL packets directly into the GPU’s
command queue for execution.

B. Latency Analysis

To precisely quantify the benefits of XTQ in our model,
we have coded a microbenchmark very similar to the API
code example presented in Figure 6. Figure 7 shows a time
breakdown of XTQ and HSA remote task spawn for a small
64B payload and a 4KB payload. The small 64B payload
over XTQ takes approximately 1.2µs to complete a remote
task, while the same payload over HSA takes approximately
1.5µs. In XTQ, the data transfer phases from initiator to target
take slightly longer than the HSA transfers. XTQ’s usage of
64B HSA-like packet format slightly increases the payload
size over an optimized Portals 4 implementation. However, the
performance penalty incurred from transferring the command
structure is dwarfed by the benefits in task launch latency.
XTQ saves approximately 300ns over HSA during the task
launch phase, since the NIC can directly schedule work on
the GPU’s command queues, while HSA requires the CPU
to process an RDMA event, create the GPU task descriptor,
and place it in the GPU’s command queue. For the 4KB
payload, we see similar savings during task enqueue, although
the speedup is proportionally less due to the increase in data
transfer and kernel execution time.

C. MPI Integration

The Message Passing Interface (MPI) [28] is the de facto
communication library for distributed-memory HPC applica-

311

312

310

313

156

113

241

219

306

303

435

432

94

64

145

135

51

412

126

414

228

229

592

545

70

75

57

68

0 500 1000 1500 2000 2500

XTQ (64B)

HSA (64B)

XTQ (4KB)

HSA (4KB)

Time (ns)

CPU PtlPut NIC Initiator Put Network NIC Target Put GPU Launch GPU Kernel Execution CPU Completion

Fig. 7. Time breakdown of remote GPU kernel launch.

1

10

100

1000

10000

100000

1 100 10000

F
re

q
u

en
cy

Size (B)
Accumulate Barrier
MPI Other Application

(a) Time distribution.

1

10

100

1000

10000

100000

1 100 10000

F
re

q
u

en
cy

Size (B)
Accumulate Barrier
MPI Other Application

(b) Accumulate data size distribution.

Fig. 8. NWChem tce ozone accumulate statistics.

tions. Several MPI functions, such as one-sided accumulate
operations and reduction collectives, have a strong compu-
tational component that can be parallelized. Using XTQ to
offload this computation to the GPU can lead to improved
performance and reduced CPU overheads. By freeing the CPU
to do independent work, XTQ enables non-blocking variants to
achieve substantial computation overlap between the primary
application thread and the accelerator.

We extended the one-sided and collective frameworks of the
Open MPI [35] implementation of the MPI-3.0 specification
to incorporate XTQ-based accumulates and reductions. Our
implementation enables library users to reap the benefits of
XTQ acceleration without altering any code.

1) MPI One-Sided Accumulates: The MPI Accumulate
function is a one-sided operation used to combine initiator-
resident data with target-resident data through a specified
operation. The target data is replaced with the result without
any explicit participation of the target process.

Accumulate operations are preceded by a collective window
creation operation during which the target process makes a
portion of its memory space available to other members in the
window for direct updates. Subsequent accumulate calls to
the target are bracketed by synchronization operations which
define access epochs. An initiator process can make multiple
accumulate calls to a target within an epoch. However, the
accumulate operations are considered complete only after the
synchronization operation that closes the epoch.

The baseline CPU accumulate implementation for Portals 4
in OpenMPI is not a true one-sided communication model: it
is layered over two-sided, send-receive calls. Our HSA-based
implementation is similar, except for the fact that the MPI
library at the target enqueues the operation on a local GPU

instead of performing it directly.
XTQ-based accumulates, however, are completely one-

sided, relieving the target-side MPI process from receiving
data and executing the operation. On receipt of data from
the initiator, the target-side NIC enqueues the appropriate
command directly on the GPU’s command queue. When exe-
cution completes, the GPU updates the target-side accumulate
buffer with the result and an internal progress thread sends an
acknowledgement to the initiator.

MPI accumulate operations are used extensively in the
NWChem [36] computational chemistry package through the
ARMCI/MPI3 library [37]. As an example, the tce ozone
workload from the NWChem regression tests spends over 58%
of its time in the MPI library on a 4 node cluster. Figure 8a
shows the percentage of time spent performing various MPI
functions on a single rank. The chart shows that the 43% of its
total execution time performing accumulate-related operations.
Figure 8b shows a histogram of the payload size and number
of accumulates that occur during tce ozone. We see a large
concentration of small-to-medium sized accumulates, which
are ideal for XTQ lightweight messaging acceleration. Unfor-
tunately, we are unable to simulate this application directly
because it requires a version of MPI not supported by our
simulation infrastructure. However, our expectation from the
profiling data is that NWChem will realize measurable benefits
from XTQ-based GPU acceleration.

2) MPI Reduce and Allreduce Collectives: MPI Reduce
and MPI Allreduce are collective operation that use a binary
operation (e.g., SUM, PROD, or MAX) to combine the cor-
responding elements in the input buffer of each participating
process [28]. For reduce, the combined results are stored in a
result buffer in the root process’s address space. For allreduce,
the combined results are stored in the result buffers of all
participating processes.

Our implementation of both reductions using XTQ is built
on the LibNBC library [38, 39]. LibNBC was designed to
support non-blocking collectives on generic architectures. In
doing so, it creates a schedule: a directive to execute a set
of operations. We modify the schedule to layer reductions on
XtqPuts instead of two-sided, send-receive operations. An
inherent problem with implementing reductions with active
messages is that the target-side resources must be allocated
before an active message can be received at the target. To ad-

0.1

1

10

1 16 256 4096 65536 1048576

S
p
ee

d
u
p

Data Items (4 Byte Integers)

CPU

HSA

XTQ

0.1

1

10

1 16 256 4096 65536 1048576

S
p
ee

d
u
p

Data Items (4 Byte Integers)

CPU

HSA

XTQ

1 16 256 4K 64K 1M

(a) XTQ accumulate acceleration on 2 nodes.

0.1

1

10

1 16 256 4,096 65,5361,048,576

S
p
ee

d
u
p

Data Items (4 Byte Integers)

CPU

HSA

XTQ

1 16 256 4K 64K 1M

(b) XTQ reduce acceleration on 2 nodes.

0

500

1000

1500

2000

2500

3000

2 6 10 14 18 22 26 30

R
u
n
ti

m
e

(u
s)

Nodes

CPU

HSA

XTQ

0

500

1000

1500

2000

0 8 16 24 32 40 48 56 64

R
u
n
ti

m
e

(u
s)

CPU

HSA

XTQ

Nodes

(c) XTQ 4MB allreduce acceleration.

Fig. 9. Acceleration of MPI accumulate, reduce, and allreduce operations over XTQ.

dress this problem, XTQ encodes an explicit synchronization
step into the schedule by issuing zero-length send/receive pairs
between initiators and targets. This step guarantees that the
target resources are available before any XtqPuts are issued.

3) MPI Benchmarks: Figure 9 shows performance results
for accumulate, reduce, and allreduce implemented on CPU,
HSA, and XTQ as defined in Section V-A. For sufficiently
large benchmarks, GPUs perform much better than CPUs
for these data-parallel operations. For a two-node accumulate
operation (Figure 9a), XTQ performs significantly better than
HSA. Interestingly, XTQ also performs better than CPU even
for very small accumulate sizes. We believe this result occurs
because CPU implements one-sided accumulates using two-
sided send/recvs, while XTQ leverages one-sided puts directly
through Portals 4. XTQ offers a reasonable performance
improvement of around 10-15% for a two-node reduction
(Figure 9b) over a standard HSA-enabled GPU. For both
operations, the benefits of XTQ over HSA decrease as the
payload increases over approximately 64KB. All of these
algorithms, however, are amenable to software pipelining,
which will push the payload size back into a range where
XTQ shows significant benefits, even for very large transfers.

Figure 9c illustrates how XTQ performs on allreduce when
strong scaling up to 64 nodes for a fixed-size global data
set of 4MB. Unlike accumulates and reductions, allreduce
requires the result to be transmitted to all nodes participating
in the collective operation. We implement allreduce as a
reduce-scatter followed by an allgather, which is an efficient
implementation for vector allreduce operations [40]. With a
fixed-size data set, increasing the number of nodes decreases
the computation per node while increasing the total number
of messages required to complete the reduction. The inflection
point at approximately 12 nodes indicates the point where the
overhead of sending more messages outweighs the benefits of
less computation.

The figure illustrates that for small node counts, the size of
each round’s messages are large enough to benefit from GPU
acceleration with or without XTQ. However, for larger node
counts, non-XTQ-enabled GPUs are unable to amortize the
high launch latency over the execution of smaller messages.
Only XTQ-enabled GPUs are able to maintain performance
improvements over a CPU reduction up to 64 nodes.

0.8

1

1.2

1.4

1.6

1.8

2

AlexNet AN4 LST CIFAR Large

Synth

MNIST

Conv

MNIST

Hidden

P
ro

je
ct

ed
 S

p
ee

d
u

p CPU HSA XTQ

Fig. 10. XTQ performance on CNTK workloads across 8 GPU-enabled nodes.

D. Machine Learning Results

In this section, we evaluate XTQ on a distributed deep-
learning framework. Our vehicle of exploration for this case
study is the Computational Network Toolkit (CNTK) [23].
CNTK provides a general programming framework that al-
lows researchers to express arbitrarily complex deep-learning
computations and deploy them across multiple nodes.

Training deep-learning networks is a very compute- and
network-intensive calculation that is difficult to parallelize ef-
ficiently. For our experiments, we configure CNTK to perform
data-parallel training, where the model is replicated across
all nodes. We select six sample applications from the CNTK
distribution that represent a broad range of data sizes and
communication patterns. Each node computes gradients using
Stochastic Gradient Descent (SGD) for a subset of the training
data and aggregates the gradients across the cluster using an
allreduce communication pattern. This cycle of computation
using SGD and global gradient allreduce is repeated until
the model has been trained to a user-defined metric. The
frequency with which gradients are aggregated between nodes
is a tradeoff between convergence time and time to complete
a round of training.

For our analysis, we collected profiling data on the Stam-
pede [3] supercomputer, where GPUs were used for local
SGD, InfiniBandTM NICs were used for communication, and
the CPUs were used for the computation in the allreduce
phase. By combining these real-world runs with detailed
simulation of allreduce operations obtained from gem5, we are
able to project the performance improvement of accelerating
the allreduce function with XTQ.

To perform this projection, we profile our Stampede runs

to extract the data size and duration of allreduce calls from
CNTK applications. We simulate allreduce calls of the same
sizes in gem5 to estimate the performance improvement attain-
able by HSA and XTQ. We then project the communications
performance improvement into the time taken to perform the
allreduce in real hardware without XTQ. Since CNTK uses
blocking allreduce calls, we do not need to worry about any
communication and computation overlap.

Figure 10 shows the results for CNTK across 8 high
performance compute nodes. Utilizing GPUs for allreduce
compute provides a 23% average improvement in runtime
over a baseline CPU version. XTQ-enabled acceleration gives
on average an additional 8% improvement over the HSA
baseline, with AN4 LST improving by 15%. CIFAR does
not significantly benefit from either form of GPU allreduce
acceleration, since it is more bound by the local SGD compute
phase than the gradient reduction.

VI. RELATED WORK

The seminal Active Messages work [20] embeds com-
putation in network messages by directly invoking a user
message handler on the target. Willcock et al. [41] developed
AM++, which extends AM with type-safe object-oriented and
generic programming, enabling optimizations such as message
coalescing. More recently, Besta and Hoefler [42] modify
the IOMMU to invoke active-message-like handlers as a side
effect of RDMA put and get operations. Our work uses HSA’s
architected task queues to extend active messages to non-CPU
accelerators. The use of explicit user-allocated task queues
rather than direct handler invocation also provides a more
flexible buffering model than the original AM.

Several machines proposed in the ’90s coupled light-weight
tasks with explicit message passing, including the J-Machine
[43], M-Machine [44], Star-T Voyager [45]; or some com-
bination of messaging passing and shared memory such as
MIT Alewife [46], Typhoon [47], and FLASH [48]. Our
work applies some of these concepts to emerging commodity
hardware with tightly coupled accelerators and RDMA NICs.

XTQ’s rewrite mechanism is similar to the Cray T3E’s
global address translation scheme [49], in that global refer-
ences are translated to local addresses at the target to decouple
local resource management from global resource identifiers.
The T3E also supported remote enqueuing to memory-based
user-level message queues, similar to how XTQ enqueues to
HSA task queues. The key differences are first, that HSA
queue entries are architecturally defined task descriptors, so
XTQ can provide additional semantics (such as argument
rewriting) that enable direct enqueuing of accelerator tasks
without target-side CPU intervention; and second, the HSA
doorbell mechanism provides a notification mechanism other
than the T3E’s options of interrupts and polling. Note that
XTQ is independent of the global addressing mechanism used
for conventional RDMA, which in our example system’s case
is provided by Portals 4.

XTQ shares some similarities with the scale-out NUMA
inspired designs which optimize RDMA for NUMA memory

fabrics [26] and NIC layouts for tiled, scale-out architec-
tures [50]. These works are primarily concerned with efficient
data movement, while ours is concerned with efficient task
invocation for heterogeneous compute devices.

Oden et al. propose Global GPU Address Spaces (GGAS)
[51] and evaluate its performance on GPU-accelerated reduc-
tions [52]. While XTQ also exploits GPUs for reductions, there
are a number of significant differences between GGAS and
XTQ. GGAS focuses on data transfer, creating a hardware-
supported global address space that spans all GPU device
memory and supports direct remote memory accesses from the
GPUs. XTQ builds on a more traditional RDMA model with
explicit put and get operations, but adds remote task invocation
to the data-transfer model.

A number of commercial and open source offerings provide
the ability to utilize GPUs in a distributed environment.
NVIDIA’s GPUDirect [21] enables direct high-performance
RDMA between InfiniBandTM NICs and the local memory of
discrete GPUs. However, task launch on the discrete GPU still
must be initiated by the CPU using the CUDA runtime and
GPU kernel driver. Our work focuses on HSA-like systems
with unified physical memory and tightly coupled accelerators.
As such, we are able to completely bypass the CPU for
both data transfer and kernel launch. Another platform for
remote GPU task invocation is rCUDA [53], which allows
CPUs without locally attached GPUs to take advantage of
GPU resources on another node. However, rCUDA is designed
primarily to virtualize a cluster’s GPU resources for coarse-
grain task offload, while XTQ is intended to enable fine-grain
interaction of low-latency communication and accelerator-
based computation. Finally, GPUNet [54] allows GPUs to
source and sink network messages directly through a sockets
interface with coordination from a CPU runtime library.

Some NICs provide built-in offload capabilities for collec-
tive operations such as reductions, including Quadrics pro-
grammable engines [55], Cray’s Aries collective engine [56],
and Mellanox’s CORE-Direct technologies [57]. XTQ pro-
vides a more general solution by making a broader range
of existing accelerated compute engines easily accessible to
the NIC. However, for small computations, NIC-based offload
will further reduce overheads by avoiding all inter-device
interactions. A NIC with built-in offload functionality could
complement other accelerators in an XTQ/HSA environment.

VII. CONCLUSION

Emerging node-level architectures tightly couple accelera-
tors into host platforms. These frameworks significantly reduce
task launch latency via user-level task queues and eliminate
data copy overhead via shared virtual memory, paving the
path for fine-grained, heterogeneous tasking models in shared-
memory environments. Concurrently, RDMA enables highly
efficient user-level network data transfers. This paper proposes
Extended Task Queuing (XTQ), a mechanism that combines
tightly coupled, user-level task queuing with RDMA to provide
heterogeneous, lightweight tasking across distributed-memory
systems. XTQ is implemented as an extension to a tightly

integrated, RDMA-capable NIC and enables applications to
schedule tasks on accelerators and CPUs across nodes. Using
XTQ, applications can send messages to remote accelerators,
bypassing the operating system on both nodes and not involv-
ing the target CPU. Bypassing the target-side CPU reduces
task launch latency by 10-15% for small-to-medium sized
messages, and frees a CPU thread from message processing
to perform more useful computation.

Because XTQ lies at the intersection of several emerg-
ing paradigms, such as accelerator-based programming and
lightweight distributed tasking, few existing applications di-
rectly leverage its benefits. We believe that XTQ opens up
new possibilities for applications to leverage accelerators for
tightly coupled communication and computation in distributed
systems. Towards this end, we demonstrate that XTQ enables
the use of GPUs to accelerate MPI reduction, allreduce, and
accumulate operations across a variety of payload sizes and
on clusters up to 64 nodes. Finally, we illustrate how XTQ
can provide up to 15% performance improvement for emerg-
ing deep learning workloads in the Computational Network
Toolkit. We are excited to see how existing applications will
adapt to the unique benefits of XTQ, and how new applications
can be designed to leverage these features.

ACKNOWLEDGMENTS

AMD, the AMD Arrow logo, and combinations thereof
are trademarks of Advanced Micro Devices, Inc. ARM is
the registered trademark of ARM Limited in the EU and
other countries. HyperTransport is a licensed trademark of
HyperTransport Technology Consortium. Other product names
used in this publication are for identification purposes only and
may be trademarks of their respective companies. Results were
obtained in part using resources from the Texas Advanced
Computing Center. This research was supported by the US
Department of Energy under the DesignForward and Design-
Forward 2 programs, and by National Science Foundation
grant CCF-1337393. Any opinions, findings, and conclusions
or recommendations expressed herein are those of the authors
and do not necessarily reflect the views of the DoE or NSF.

REFERENCES

[1] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. Gopal, J. Gray, M. Haselman,
S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson,
S. Pope, A. Smith, J. Thong, P. Xiao, and D. Burger, “A reconfigurable
fabric for accelerating large-scale datacenter services,” in Int. Symp. on
Computer Architecture (ISCA), 2014, pp. 13–24.

[2] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Int. Symp. on
Computer Architecture (ISCA), 2015, pp. 105–117.

[3] TACC, “Stampede supercomputer user guide,” https://portal.tacc.utexas.
edu/user-guides/stampede, 2015.

[4] TOP500.org, “Highlights - November 2015,” http://www.top500.org/
lists/2015/11/highlights, 2015.

[5] Intel, “Intel Xeon Phi product family,” www.intel.com/XeonPhi, 2015.
[6] Amazon, “Amazon EC2 cloud computing,” https://aws.amazon.com/

ec2/, 2015.
[7] Nvidia, “CUDA toolkit 6.0,” https://developer.nvidia.com/

cuda-toolkit-60, 2014.
[8] HSA Foundation, “HSA platform system architecture specification 1.0,”

http://www.hsafoundation.com/standards/, 2015.

[9] Intel, “The compute architecture of Intel processor graphics
gen9,” https://software.intel.com/sites/default/files/managed/c5/9a/
The-Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.
pdf, 2015.

[10] B. Wile, “Coherent accelerator processor interface (CAPI) for
POWER8 systems,” http://www-304.ibm.com/webapp/set2/sas/f/capi/
CAPI POWER8.pdf, IBM, Tech. Rep., 2014.

[11] AMD, “AMD A-Series desktop APUs,” http://www.amd.com/en-us/
products/processors/desktop/a-series-apu, 2015.

[12] Nvidia. (2012) Hyperq sample. http://docs.nvidia.com/cuda/samples/6
Advanced/simpleHyperQ/doc/HyperQ.pdf.

[13] D. Lustig and M. Martonosi, “Reducing GPU offload latency via fine-
grained CPU-GPU synchronization,” in Int. Symp. on High Performance
Computer Architecture (HPCA), 2013, pp. 354–365.

[14] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “Dynamic thread
block launch: A lightweight execution mechanism to support irregular
applications on GPUs,” in Int. Symp. on Computer Architecture (ISCA),
2015, pp. 528–540.

[15] InfiniBand Trade Association. (2000) InfiniBand architecture specifica-
tion: Release 1.0.2. http://www.infinibandta.org/content/pages.php?pg=
technology download.

[16] Intel. (2015) Omni-Path fabric 100 series. https://fabricbuilders.intel.
com/.

[17] Sandia National Laboratories, “The Portals 4.0.2 network programming
interface,” http://www.cs.sandia.gov/Portals/portals402.pdf, 2014.

[18] InfiniBand Trade Association, “RDMA over converged ethernet v2,”
https://cw.infinibandta.org/document/dl/7781, 2014.

[19] Intel, “Internet wide area RDMA protocol (iWARP),” http://www.intel.
com/content/dam/doc/technology-brief/iwarp-brief.pdf, 2010.

[20] T. Eicken, D. Culler, S. Goldstein, and K. Schauser, “Active messages:
A mechanism for integrated communication and computation,” in Int.
Symp. on Computer Architecture (ISCA), 1992, pp. 256–266.

[21] Mellanox, “Mellanox GPUDirect RDMA user manual,”
http://www.mellanox.com/related-docs/prod software/Mellanox
GPUDirect User Manual v1.2.pdf, 2015.

[22] T. Hoefler and A. Lumsdaine, “Message progression in parallel comput-
ing - to thread or not to thread?” in Int. Conf. on Cluster Computing
(Cluster), 2008, pp. 213–222.

[23] A. Agarwal, E. Akchurin, C. Basoglu, G. Chen, S. Cyphers,
J. Droppo, A. Eversole, B. Guenter, M. Hillebrand, T. R. Hoens,
X. Huang, Z. Huang, V. Ivanov, A. Kamenev, P. Kranen, O. Kuchaiev,
W. Manousek, A. May, B. Mitra, O. Nano, G. Navarro, A. Orlov,
H. Parthasarathi, B. Peng, M. Radmilac, A. Reznichenko, F. Seide, M. L.
Seltzer, M. Slaney, A. Stolcke, H. Wang, Y. Wang, K. Yao, D. Yu,
Y. Zhang, and G. Zweig, “An introduction to computational networks
and the Computational Network Toolkit,” Microsoft, Technical Report,
2014.

[24] AMD, “AMD I/O virtualization technology (IOMMU) specification,”
http://support.amd.com/TechDocs/48882 IOMMU.pdf, 2015.

[25] M. Ben-Yehuda, J. Mason, L. Van Doorn, and E. Wahlig, “Utilizing
IOMMUs for virtualization in Linux and Xen,” in In proc. of the Linux
Symp., 2006.

[26] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, “Scale-
out NUMA,” in Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014, pp. 3–18.

[27] B. Towles, J. Grossman, B. Greskamp, and D. Shaw, “Unifying on-chip
and inter-node switching within the Anton 2 network,” in Int. Symp. on
Computer Architecture (ISCA), 2014, pp. 1–12.

[28] MPI Forum, “MPI: A message-passing interface standard. ver. 3,” www.
mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf, 2012.

[29] D. Bonachea, “GASNet specification, v1.1,” http://gasnet.lbl.gov/
CSD-02-1207.pdf, 2002.

[30] D. Bonachea, P. H. Hargrove, M. Welcome, and K. Yelick, “Porting
GASNet to Portals: Partitioned global address space (PGAS) language
support for the Cray XT,” in Cray User Group (CUG), 2009.

[31] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, pp. 1–7, 2011.

[32] AMD. (2015) The AMD gem5 APU simulator: Modeling heterogeneous
systems in gem5. http://gem5.org/GPU Models.

[33] M. Daga, A. Aji, and W.-C. Feng, “On the efficacy of a fused CPU+GPU
processor (or APU) for parallel computing,” in Symp. on Application
Accelerators in High-Performance Computing (SAAHPC), 2011, pp.
141–149.

[34] M. Schulte, M. Ignatowski, G. Loh, B. Beckmann, W. Brantley, S. Gu-
rumurthi, N. Jayasena, I. Paul, S. Reinhardt, and G. Rodgers, “Achieving
exascale capabilities through heterogeneous computing,” Micro, IEEE,
vol. 35, no. 4, pp. 26–36, 2015.

[35] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine et al.,
“Open MPI: Goals, concept, and design of a next generation MPI
implementation,” in Recent Advances in Parallel Virtual Machine and
Message Passing Interface, 2004, pp. 97–104.

[36] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma,
H. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus et al.,
“NWChem: a comprehensive and scalable open-source solution for large
scale molecular simulations,” Computer Physics Communications, vol.
181, no. 9, pp. 1477–1489, 2010.

[37] J. Hammond, “ARMCI-MPI - MPICH wiki,” https://wiki.mpich.org/
armci-mpi/index.php/Main Page, 2015.

[38] T. Hoefler and A. Lumsdaine, “Design, implementation, and usage of
LibNBC,” Open Systems Laboratory, Technical Report, 2006.

[39] T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation and per-
formance analysis of non-blocking collective operations for MPI,” in
Int. Conf. on High Performance Computing, Networking, Storage and
Analysis (SC), 2007, pp. 52:1–52:10.

[40] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49–66, 2005.

[41] J. J. Willcock, T. Hoefler, N. G. Edmonds, and A. Lumsdaine, “AM++:
A generalized active message framework,” in Int. Conf. on Parallel
Architectures and Compilation Techniques (PACT), 2010, pp. 401–410.

[42] M. Besta and T. Hoefler, “Active Access: A mechanism for high-
performance distributed data-centric computations,” in Int. Conf. on
Supercomputing (ICS), 2015, pp. 155–164.

[43] M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang, Y. Gurevich,
and W. S. Lee, “The M-Machine multicomputer,” in Int. Symp. on
Microarchitecture (MICRO), 1995, pp. 146–156.

[44] M. Noakes, D. Wallach, and W. Dally, “The J-Machine multicomputer:
An architectural evaluation,” in Int. Symp. on Computer Architecture
(ISCA), May 1993, pp. 224–235.

[45] B. S. Ang, D. Chiou, D. L. Rosenband, M. Ehrlich, L. Rudolph, and
Arvind, “StarT-Voyager: A flexible platform for exploring scalable SMP
issues,” in Int. Conf. for High Performance Computing, Networking,
Storage and Analysis (SC), 1998, pp. 1–13.

[46] A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D. Kranz, J. Ku-
biatowicz, B. Lim, K. Mackenzie, and D. Yeung, “The MIT Alewife
machine: architecture and performance,” in Int. Symp. on Computer
Architecture (ISCA), 1995, pp. 2–13.

[47] S. Reinhardt, J. Larus, and D. Wood, “Tempest and Typhoon: user-level
shared memory,” in Int. Symp. on Computer Architecture (ISCA), 1994,
pp. 325–336.

[48] J. Heinlein, K. Gharachorloo, S. Dresser, and A. Gupta, “Integration
of message passing and shared memory in the Stanford FLASH mul-
tiprocessor,” in Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 1994, pp. 38–50.

[49] S. L. Scott, “Synchronization and communication in the T3E multi-
processor,” in Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 1996, pp. 26–36.

[50] A. Daglis, S. Novakovic, E. Bugnion, B. Falsafi, and B. Grot, “Manycore
network interfaces for in-memory rack-scale computing,” in Int. Symp.
on Computer Architecture (ISCA), 2015, pp. 567–579.

[51] L. Oden and H. Froning, “GGAS: Global GPU address spaces for
efficient communication in heterogeneous clusters,” in Int. Conf. on
Cluster Computing (CLUSTER), 2013, pp. 1–8.

[52] L. Oden, B. Klenk, and H. Froning, “Energy-efficient collective reduce
and allreduce operations on distributed GPUs,” in Int. Symp. on Cluster,
Cloud and Grid Computing (CCGrid), 2014, pp. 483–492.

[53] J. Duato, A. Pena, F. Silla, R. Mayo, and E. Quintana-Orti, “rCUDA:
Reducing the number of GPU-based accelerators in high performance
clusters,” in Int. Conf. on High Performance Computing and Simulation
(HPCS), 2010, pp. 224–231.

[54] S. Kim, S. Huh, X. Zhang, Y. Hu, A. Wated, E. Witchel, and M. Silber-
stein, “GPUnet: Networking abstractions for GPU programs,” in 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2014, pp. 201–216.

[55] D. Roweth and A. Pittman, “Optimised global reduction on QsNetII,”
in Symp. on High Performance Interconnects, 2005, pp. 23–28.

[56] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray
XC series network,” http://www.cray.com/sites/default/files/resources/
CrayXC30Networking.pdf, 2015.

[57] R. Graham, S. Poole, P. Shamis, G. Bloch, G. Bloch, H. Chapman,
M. Kagan, A. Shahar, I. Rabinovitz, and G. Shainer, “ConnectX-2
InfiniBand management queues: First investigation of the new support
for network offloaded collective operations,” in Int. Conf. on Cluster,
Cloud and Grid Computing (CCGrid), 2010, pp. 53–62.

