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Abstract—Big data revolution has created an unprecedented
demand for intelligent data management solutions on a large
scale. While data management has traditionally been used as
a synonym for relational data processing, in recent years a
new group popularly known as NoSQL databases have emerged
as a competitive alternative. There is a pressing need to gain
greater understanding of the characteristics of modern databases
to architect targeted computers. In this paper, we investigate
four popular NoSQL/SQL-style databases and evaluate their
hardware performance on modern computer systems. Based on
data collected from real hardware, we evaluate how efficiently
modern databases utilize the underlying systems and make
several recommendations to improve their performance efficiency.
We observe that performance of modern databases is severely
limited by poor cache/memory performance. Nonetheless, we
demonstrate that dynamic execution techniques are still effective
in hiding a significant fraction of the stalls, thereby improving
performance. We further show that NoSQL databases suffer from
greater performance inefficiencies than their SQL counterparts.
SQL databases outperform NoSQL databases for most operations
and are beaten by NoSQL databases only in a few cases.
NoSQL databases provide a promising competitive alternative
to SQL-style databases, however, they are yet to be optimized
to fully reach the performance of contemporary SQL systems.
We also show that significant diversity exists among different
database implementations and big-data benchmark designers can
leverage our analysis to incorporate representative workloads to
encapsulate the full spectrum of data-serving applications. In
this paper, we also compare data-serving applications with other
popular benchmarks such as SPEC CPU2006 and SPECjbb2005.

I. INTRODUCTION

The big-data revolution has created an unprecedented de-
mand for efficient data management solutions. Traditionally,
data management systems were primarily driven by relational
database management systems (RDBMS) based on the struc-
tured query language (SQL). However, in recent years, a
new group of data management solutions, popularly known as
NoSQL (Not-Only SQL) databases, have emerged as a compet-
itive alternative. NoSQL technology is becoming increasingly
popular because of its improved flexibility and scalability over
RDBMS, and notable companies such as Google, Facebook
etc with considerable amounts of online data are adopting
NoSQL-style databases. Nevertheless, SQL systems have their
own share of strengths: greater structure, powerful interface,
ACID compliance and complex operation support. As SQL
and NoSQL databases capitalize on different organization
philosophies, neither database completely out-rules the other,
and both have spaces in which one can be applied more
successfully than the other. Recent years have thus, seen
a surge in the number and diversity of SQL and NoSQL
databases. Undoubtedly, SQL and NoSQL systems form a
very important class of applications that are run on modern
computer systems and it is imperative to understand their
performance characteristics to architect targeted computers.
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Several past studies [1], [2], [3] have evaluated the per-
formance of online transaction processing (OLTP) workloads.
However, significant advances have been made in computer
designs during the last two decades. Are current architectures
well positioned to meet the challenges imposed by mod-
ern databases working on large datasets? Are the emerging
databases ill-suited to run on contemporary hardware systems?
We undertake a detailed evaluation of four widely popular,
modern NoSQL and SQL databases (Cassandra [4], MongoDB
[5], MySQL [6] and VoItDB [7]) in order to discover their
performance characteristics on modern systems. Based on data
collected from real hardware, our evaluation aims to provide
meaningful insights not only for computer architects to design
targeted hardware with improved compatibility with database
applications, but also for database designers to understand the
performance of their software and tune it to better exploit
underlying systems. To the best of our knowledge, the work
presented in this paper is the first work that extensively com-
pares the microarchitectural performance of different NoSQL
and SQL offerings on modern computer systems.

Many recent research studies [8], [9], [10] have evaluated
the overall performance spectrum of big-data applications,
however their evaluation of the data-serving space has mostly
been limited to a few database applications. Many big-data
benchmarking suites [8] [9] have also been recently proposed,
however these suites include at most a single (or two) database
run(s) to represent the entire class of data-serving applications.
In the light of the ever increasing diversity and number of
NoSQL/SQL databases, we evaluate a wider range of databases
and seek to find out how the different solutions compare
against each other. Based on our evaluation, we show that
there exists significant variability in terms of both performance
and inherent characteristics between the different databases.
While many recent benchmarking suites include one program
to represent the class of data-serving applications, we find that
it is not enough to be completely representative.

We also compare the database applications with three
widely popular benchmarking suites representing other ap-
plication classes, desktop-computing (SPEC CPU2006 [11]
(SPEC)), Java applications (SPECjbb2005 [12] (SPECjbb))
and high-performance computing (HP Linpack [13] (Lin-
pack)). Our evaluation identifies important correlations among
the tested workloads in terms of specific performance char-
acteristics (e.g., cache behavior) and can aid performance
analysts to select most representative substitute benchmarks
to evaluate performance of data-serving applications if they
cannot run real-world applications, which is an important
concern especially in early stages of design analysis.

Based on our evaluation of the performance of four
NoSQL/SQL databases, we seek to answer the following :-

How effectively do modern SQL and NoSQL
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Fig. 1: Experimental Multi-node Setup for (a) Cassandra, (b) MongoDB, (c¢) MySQL, (d) VoltDB

databases utilize the underlying computer systems?
For instance, are out-of-order (OOO) processors nec-
essary for modern databases?

What are the sources of any performance inefficien-
cies?

Is the performance of NoSQL databases different from
SQL databases?

Is the performance of data-serving applications no-
ticeably different from other application classes? If
so, what are the most unique features defining the
behavior of the database applications.

Do any benchmarks from standard suites exhibit re-
semblance to database applications in terms of se-
lected performance metrics (e.g., cache behavior)?

The rest of this paper is organized as follows: In Section 2,
we present an overview of the databases and our methodology.
In section 3, we describe our test infrastructure. Section 4
presents our results and analysis. Finally, we discuss prior
work and summarize our key findings in sections 5 and 6
respectively.

II. METHODOLOGY

In this section, we present a brief background of the tested
databases, benchmarks and our experimental methodology.

A. Databases

1) Cassandra: Apache Cassandra [4] is a popular Java
implementation of a column-family style NoSQL database.
Cassandra is incrementally scalable, eventually consistent, and
has no single point of failure. Every node in the Cassandra
cluster knows of and has the key for at least one other node and

115

any node can service a request. The node structure can be best
visualized as a ring of interconnected nodes. It was primarily
designed for write-intensive applications and it tries to achieve
linear throughput scaling with the number of nodes. Reads
have added time complexity over writes because Cassandra
has a temporary data structure for recent writes and consistency
across nodes is enforced at read time through majority voting.
Cassandra is semi-structured in that its data may share some
of the same fields/columns, but not all. Our experimental setup
of Cassandra is shown in Figure 1a, which includes four data-
partitioned server nodes, connected in a ring network.

2) MongoDB: MongoDB [5] is a C++ implementation of
a document-style NoSQL database. It is designed for speed
and scalability and can store large documents such as binaries,
audio/video files etc. It has a flexible schema and it allows
objects to not have fixed schema or type. Documents are
stored as Binary JSON objects and may be organized into
collections. Within a collection, each document has a primary
key, and an index can be created for each query-able field.
Queries are normally performed over a collection, but more
complex queries may be performed using a variation of map-
reduce. MongoDB’s data can be of any type, and it is searched
using keys and meta-data information. Our multi-node setup of
MongoDB is shown in Figure 1b. The dataset is sharded over
four server nodes and we use separate nodes for MongoDB’s
router and config-server. Client node connects with the router
node, which then distributes work over the server nodes.

3) MySQL: MySQL [6] is one of the world’s most popular
open-source RDBMS. It enables the cost-effective delivery
of reliable, high-performance and scalable web-based and
embedded database applications. MySQL is designed to work
on data whose fields are structured and finite in number.
Given this knowledge of data, MySQL is able to organize
and search through it in multiple dimensions. This is both its



strength and its limitation, as it cannot use the same strategy
on less structured data. MySQL does not support automatic
data sharding. Our multi-node MySQL server setup (Figure
Ic) employs client-side hashing to determine the home node
for data records. This approach to scale-out MySQL database
has also been used by other research studies [14]. Since
the type of operations performed against the databases are
simple (read, write etc), the operations do not involve any
significant communication between the server nodes and so,
can be compared with other automatically sharded databases
without loss of accuracy.

4) VoltDB: VoltDB [7] is a scale-out in-memory database,
belonging to the class of modern RDBMSs, that seeks to offer
the speed and scalability of NoSQL databases but with ACID
guarantees, relational data models, and transactional capability
of traditional RDBMSs. It uses a shared nothing architecture
to achieve database parallelism. Data and its corresponding
processing is distributed among all the CPU cores within
the servers composing a single VoltDB cluster. By extending
its shared-nothing foundation to the per-core level, VoltDB
scales with the increasing core-per-CPU counts on modern
commodity servers. VoltDB relies on horizontal partitioning
down to the individual hardware thread to scale, synchronous
replication to provide high availability and a combination of
continuous snapshots and command logging for durability. Our
multi-node setup of VoltDB is shown in Figure 1d.

B. Benchmark Description

We use the Yahoo! Cloud Serving Benchmark (YCSB)[14]
as the client for integrating against our tested databases. YCSB
is a standard benchmarking framework that was developed
to assist in the evaluation of different cloud systems. The
YCSB framework consists of a workload generating client and
a package of standard ’core’ workloads. Details of YCSB’s
core workloads are provided in Table I. The YCSB workloads
cover a majority of the most important operations, which are
performed against a typical data-serving database. Our test
database is generated using the YCSB framework and consists
of over 10 million records, for a total size of over 12 GB. The
YCSB workloads executed between 5-20 billion total instruc-
tions on average for all the databases, with different operations
needing different number of instructions to complete.

We also compare the performance of NoSQL and SQL
databases with several widely used benchmarking suites repre-
senting other application classes. We evaluate SPEC CPU2006
benchmarks as a representative of the general-purpose, desktop
applications. We run 20 out of 26 benchmarks from the
SPEC CPU2006 suite, six Fortran benchmarks could not be
run on our test infrastructure due to compile/run-time issues.
SPECjbb is a SPEC benchmark for evaluating performance and
scalability of real-world server-side Java business applications.

Workload | Operations Record Selection | Application Example

A - Update | Read: 50%,Update: . Session store recording recent actions
Zipfian . .

heavy 50% in a user session

B - Read Read: 95%,Update: Zinfian Photo tagging; add a tag is an update,

heavy 5% P but most operations are to read tags

C - Read Read: 100% Zipfian User profile cache, where profiles are

only constructed elsewhere (e.g, Hadoop)

D - Read Read: 95%,Insert: User status updates; people want to
Latest

latest 5% read the latest status

E - Short Scan: 95%,Insert: Zipfian/ Threaded conversations, where each

Ranges 5% Uniform scan is for the posts in a given thread

TABLE I: YCSB Core Workloads
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Performance Metric
Instructions per Cycle (IPC)
UOPs / Instruction
IMIX-Control

Description

Total retired instructions (insts) / Total cycles
Total retired UOPs / Total retired insts
Retired control insts / Total retired insts

IMIX-Loads Retired load insts / Total retired insts

IMIX-Stores Retired store insts / Total retired insts

IMIX-INT Retired integer insts / Total retired insts

IMIX-FP Retired floating-point(FP) insts / Total retired insts
IMIX-SIMD Retired SIMD insts / Total retired insts

FLOPs / Instruction

Cond. Branch Frequency
Branch Taken Rate
Branch Speculation Factor
Call/Return Frequency
Branch Misprediction Rate
L1 DCache MPKI (L1D)
L1 DTLB MPKI (L1
DTLB)

L1 ICache MPKI (L1T)
L1ITLB MPKI (L1 ITLB)
LLC MPKI

Page-walks per kilo-inst
Memory transactions per Inst
ROB Full Stalls

Retired FP operations / Total retired insts
Retired conditional branches / Retired branches
Total taken branches / Total branches

Total branches decoded / Total branches retired

Total calls + returns / Total branches retired

Total branch mispredictions / Total branches retired
L1 data cache (DCache) misses / Retired kilo-insts
L1 data translation look-aside buffer (DTLB) misses /
Total kilo-insts retired

L1 inst cache (ICache) misses/ Retired kilo-insts

L1 ITLB misses / Total kilo-insts retired

LLC misses / Total kilo-insts retired

Page-walk count / Total kilo-insts retired

Memory bus transactions / Total kilo-insts retired
Reorder buffer (ROB) full resource (res) stalls / res stalls

RS Full Stalls Reservation Station (RS) full res stalls / res stalls
LD/ST Buffer Full Stalls Load-Store (LDST) buffer full res stalls / res stalls
FPCW Stalls FPCW res stalls / res stalls

BrMis Prediction Stalls Branch Misprediction res stalls / Total res stalls
RAT Stalls Register Alias Table (RAT) stalls / Total res stalls

Front-end Stalls (Fr-St)
Resource Stalls/Total Cycles

Front-end stalls / Total res stalls
Total res stalls / Total cycles

TABLE II: Measured Hardware Performance Counter Metrics

It resembles an online transaction processing based application
and is implemented in an object-oriented manner to emulate
a three-tier client/server system. High-Performance(HP) Lin-
pack benchmark is a high-performance computing benchmark,
which solves a dense system of linear equations. It is a very
popular benchmark and is used to measure performance of
supercomputers (Top 500). We parametrize Linpack to run on
a 10 GB dataset size.

C. Performance Metrics

To characterize hardware performance, we use performance
counters available on contemporary microprocessors. Perfor-
mance counters provide the means to track detailed events
that occur on an actual chip. Details of all the performance
metrics we measure are provided in Table II. We also capture
and compare the fraction of time each application spends
executing operating system (OS) and user/database code and
its performance implications.

D. Similarity Analysis

We perform a systematic (dis)similarity study between the
databases and SPEC, SPECjbb and Linpack benchmarks. Since
the number of performance metrics is large, we use statistical
analysis techniques to compare all the programs based on their
measured characteristics. To remove any correlations between
the measured data, we first pre-process the data by normalizing
the raw data to a unit normal distribution and performing
principal component analysis (PCA) [15] on the same. PCA is
an effective statistical data analysis technique to reduce the
dimensionality of a dataset, while maintaining most of its
original information. Finally, we use hierarchical clustering
in the PCA space to find clusters of programs possessing
similar properties. Our benchmark similarity analysis approach
is similar to what has been adopted in prior research [16], [17]
for traditional single-node workloads.



III. EXPERIMENTAL FRAMEWORK

For the experiments, we use a four-node configuration that
is more representative of scale-out server deployments. In the
multi-node setup, individual nodes are connected through a
1Gbps Ethernet network. Each node has two 64-bit Intel(R)
Xeon(R) E5405 processors running at 2GHz, each having four
out-of-order cores. Each core has private L1 caches (64 KB
instruction and 64 KB data cache) and the cores share a single
12 MB L2 cache. Each node has 16GB of main memory.

Individual database server nodes are setup as shown in
Figure 1. We use MongoDB version 2.6.5, running one mon-
god instance per server node. We use different nodes for
MongoDB’s config server and router node. We verified that
the router node and config server were lightly loaded and were
not bottlenecks in our tests. We use Cassandra version 0.1.7
with Java Oracle JDK version 1.7 and a JVM heap size of
8GB. The Cassandra multi-node cluster was setup using four
nodes, connected in a peer-to-peer ring-based network. We
use Cassandra’s RandomPartitioner (hash-based) to partition
data among the nodes evenly. We use MySQL version 5.1.15.
We use VoltDB version 5.3, running one VoltDB instance per
server node.

All our tests are run using the client-server model. Dataset
is generated using the YCSB framework and it consists of
over 10 million records, for a total database size of over
12 GB. The dataset size was chosen so that the data fits
into memory of the server nodes, which is the recommended
operational setup for scale-out applications for better database
performance [18]. In our tests, read operations retrieve an
entire record, while updates modify one of the fields. We
run 100,000 operations against the databases using 32 client
threads. In order to evaluate microarchitectural performance,
we use Linux perf tool [19] that provides an interface to
the processor performance counters. To ensure greater data
reliability, we repeat our experiments ten times over the entire
execution of the applications.

IV. EVALUATION AND ANALYSIS

In this section, we present a detailed evaluation of per-
formance characteristics of modern NoSQL/SQL databases.
The naming convention used for benchmarks in the following
sections is:- Databases are represented as Wx-DB, where x
is the YCSB workload type (A-E) and DB is the database
name and "Avg-DB” is the average value across all databases.
SPEC-INT and SPEC-FP represent the average value for SPEC
integer and floating-point benchmarks respectively.

A. Overall Micro-architectural Performance Efficiency

We begin our discussion by evaluating the overall per-
formance efficiency of the four databases on modern OOO
processors. We are primarily interested to find out how the
database cycles per instruction (CPI) correspond to the theo-
retical CPIs and identify the main performance bottlenecks.
Figure 2 shows the IPC of all four databases running the
YCSB workloads. IPC metric indicates how many instructions
can be executed simultaneously and can be used to measure
the instruction level parallelism of the application. The overall
measured IPC of the databases is 0.58. Database workloads
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Fig. 2: Instructions per cycle for all workloads

have much lower IPCs (less than 0.6) than SPEC-INT, SPEC-
FP and Linpack benchmarks but their IPC values are closer to
the SPECjbb benchmark. MySQL has the highest IPC among
the data-serving workloads, while MongoDB has the lowest. It
is also interesting to observe that different types of operations
lead to different IPCs in database applications, which implies
that different operations have different performance require-
ments and bottlenecks. It is to be noted that scan workload
(WorkloadE) IPC is higher for all four databases. But scan
operations also use significantly more number of instructions
to execute the same number of database operations, which
translates to their poor performance. This is especially true for
Cassandra which executes 10-20x more instructions for scan
operations as compared to other read/write operations.

Figure 3 shows the breakdown of retired instructions into
database/user and OS mode. We observe that all the databases
spend 70 - 85% of their execution time in database code,
with an average IPC of 0.62. Remaining time is spent in
executing operating system code (approximately 15-30% of
instructions with a lower average IPC of 0.34). Such high OS
activity in data serving workloads arises because of handling
a large number of data requests that lead to higher number
of disk/network activity. It is also interesting to observe that
NoSQL databases execute a larger fraction of OS instructions
(25% of OS code) than SQL databases (15% of OS code) for
all YCSB workloads.

For different workloads, IPC can be limited by several
reasons: pipeline stalls, instruction dependencies and memory
stalls. We show the breakdown of execution cycles in the four
databases into useful computation and stall cycles in Figure 4.
Comparing the useful computation and stall cycle breakdown
of the workloads, we can observe that stall cycles dominate the
overall execution. Poor cache/memory subsystem performance
is the major contributor to the overall stall cycles, as we will
discuss further in the the next section.
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B. Cache and Memory System Behavior

Memory system related stalls comprise a significant portion
of the total execution time in modern databases. In this section,
we evaluate the cache/memory (both for instruction and data)
performance of different databases.

Instruction caches and TLBs are critical components as
they are used to fetch and feed instructions to the core.
Higher instruction cache or TLB misses are detrimental to
performance, because these misses cause front-end stalls in the
pipeline and reduce pipeline’s efficiency. Figures 5 and 6 show
the L1 ICache and TLB misses (ITLB induced page walks)
per thousand instructions for each workload respectively. Both
NoSQL and SQL databases experience high ICache (27 MPKI
average) and TLB misses. MongoDB experiences the worst
ICache and ITLB performance, which results in significant
front-end pipeline stalls for MongoDB. In contrast, ICache
misses are relatively rare in SPEC, SPECjbb and Linpack
benchmarks. This can be attributed to several reasons. First,
database applications have much higher application footprints
than typical SPEC/Linpack applications which exceeds the
on-chip cache capacity of modern processors. Second, third-
party libraries used by the databases further increase the
size of their application binaries. Third, databases execute
significantly higher fraction of OS code and as a result, the
limited on-chip ICache/TLB capacity is shared by both OS
and database code. Cassandra’s bigger codebase may also
be attributed to its JVM dependency. Modern processors are
equipped with simple next-line instruction prefetchers, which
are not quite effective for the tested databases. Intelligent
prefetching schemes targeting specific instruction execution
patterns is likely to improve the front-end performance/power-
efficiency of databases significantly.
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Fig. 6: Instruction and Data TLB Misses per kilo instructions for
each workload

Figures 5, 6 and 7 show the data cache, data TLB and
unified last-level cache (LLC) performance of the workloads
respectively. We can see that data serving applications have
significantly higher data cache/TLB misses than SPEC ap-
plications. MongoDB suffers significantly due to its poor L1
data cache performance, its data does not fit adequately into
L1 resulting in over 160 DCache MPKI. Despite MongoDB’s
poor instruction and data cache performance, its instructions
and data fit into the LLC, which results in lower LLC cache
MPKI as shown in Figure 7. MongoDB’s lower IPC is partly
attributed to its poor cache performance as a result of which
it is constantly waiting for memory operations missing its L1
cache. Cassandra and MySQL have better L1 data cache and
TLB performance as compared to MongoDB, but they both
experience higher LLC cache misses. Cassandra has higher
LLC MPKI than MySQL for all the workloads. Optimiza-
tions targeting to improve the performance of instruction and
data caches can substantially improve the performance of all
databases, especially MongoDB.

C. Processor Pipeline Issues

1) Control flow Performance: Figure 8 shows the control
flow performance of NoSQL/SQL databases. Control instruc-
tions add up to 15-20% of their overall instruction mix. We also
observe that databases experience higher branch misprediction
rates (over 6%) as compared to SPEC applications. Linpack
experiences the lowest branch misprediction rate due to its
regular control flow structure. Branch predictor performance
is critical because incorrect predictions, especially in today’s
deep, complex pipelines lead to expensive pipeline flushes and
stalls. MongoDB experiences the highest misprediction rates
(over 5.5%) for most workloads. MySQL is a close second
sitting around 5%. In contrast to prior studies on OLTP-like
workloads, we observed that branch misprediction rates are
lower than prior reported numbers (over 15-20% in [1]) owing
to improvements in branch predictor designs. As a result,
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branch-misprediction related stalls contribute much less to the
overall stall cycles.

2) Does Out-of-Ordering help?: Out-of-ordering and spec-
ulative execution engines provide significant scope for per-
formance optimizations, but also lead to complex and power-
hungry micro-architecture designs. As database performance
is limited significantly by the memory system, many may
argue to employ simpler in-order execution engines to achieve
better power efficiency without degrading performance. In
this section, we investigate how effective are the dynamic
execution techniques in improving performance of modern
databases. In order to do so, we compare the measured CPI
of the applications with the non-overlapped CPI using stall
and execution cycles. The intent is that if OOO execution is
effective, then individual components of the non-overlapped
CPI should be overlapped and measured CPI should be much
lower than non-overlapped CPI. Figure 9 shows the results for
different databases aggregated over all the YCSB workloads.
The stacked bars include stalls corresponding to pipeline re-
sources, memory and computation cycles. We can observe that
the measured CPI is lower than the non-overlapped stalls in all
cases, measuring around 53-80% of the non-overlapped CPIL.
Similar observations hold for individual YCSB workloads as
well. MongoDB has the least overlapping of stall components
among all the databases as it experiences significantly higher
number of cache misses than the other databases. Cassandra,
on the other hand, shows the highest overlapping. In general,
0OO0O execution is effective at hiding the non-overlapped CPI
components to achieve a lower actual CPI. In contrast, actual
CPI of the SPEC applications is 45-55% of the non-overlapped
CPI. Thus, we can conclude that although OOO execution and
speculation are less effective for the SQL/NoSQL databases
than SPEC-like applications, they are still effective at improv-
ing performance of databases like Cassandra and VoltDB.
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D. Workload Similarity Analysis

In this section, we study the similarities between data-
serving applications and SPEC, SPECjbb and Linpack bench-
marks. Our analysis shows where different workloads lie in the
workload space and can help performance analysts to choose
representative benchmarks while evaluating future hardware
designs targeting database applications.

We begin by comparing the applications based on cache
and memory performance related characteristics only. Figure
10 shows the dendrogram plot. The horizontal scale lists
all the applications and the vertical scale corresponds to the
linkage distances between the applications indicating relative
similarity. Shorter linkage distance implies greater similarity.
We can see that database workloads form a separate cluster
from SPEC benchmarks with the exception of Workload E
(Cassandra and MySQL). Cache/memory performance of data-
serving applications is closest to the SPECjbb benchmark
and mcf benchmark from SPEC CPU2006. However, once
all the characteristics are considered, mcf and SPECjbb move
away from the database cluster as shown in Figure 11. No
single non-database benchmark comes close in representing
the full spectrum of database applications. Cassandra’s scan
functionality (WE) has a lot of associated overhead and
executes 10-20x more instructions than other operations and
databases. As a result, it’s behavior is significantly different
from other database workloads and it is the only database
program grouped in the SPEC cluster.

Putting it all together, modern databases suffer from sev-
eral bottlenecks which limit their overall performance on
contemporary hardware systems. This is exemplified in the
kiviat diagram plots in Figure 12 for a few selected work-
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Fig. 12: Kiviat diagrams of the representative workloads. Database
runs are for workload A. [Note the change of scale for Linpack]

loads. The kiviat plots are based on selected raw perfor-
mance metrics (L1D, L1I, LLC, I/D TLB MPKI, %kernel
instructions executed (Ker), branch misprediction rate (BrMis),
fraction of front-end stalls(Fr-St)), normalized by their maxi-
mum observed values. The plots illustrate significant diversity
in the performance and bottlenecks of different databases.
We can also observe that as compared to their SQL coun-
terparts, NoSQL databases suffer from worse performance
inefficiencies. For example, NoSQL databases have signif-
icantly worse instruction/data cache and TLB performance
than SQL databases for the same operations. MongoDB, in
spite of executing the least number of instructions for every
workload, suffers from the highest cache miss rates among all
the databases. It also executes a significantly greater fraction
of OS instructions. MySQL executes more instructions than
MongoDB for same number of database operations, yet its
design and implementation allows it to exploit the underlying
hardware more efficiently. This also results in better perfor-
mance of MySQL compared to NoSQL databases for several
workloads. Many recently proposed big-data benchmarking
suites [8], [9] include at most a single (or two) database
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run(s) to represent the entire class of data-serving applications.
Our evaluation shows that this is not enough to represent the
entire class of data-serving applications. It is also interesting
to note that even though SPECjbb has IPC values closer
to MongoDB and Cassandra, it stresses a different set of
system components (branch misprediction rate and LLC cache
misses) which lead to its overall poor performance. Even with
a comparable dataset size (over 10GB), Linpack does not
encounter similar memory subsystem issues as the database
applications, demonstrating that Linpack program behavior is
different from databases even when the dataset is big.

E. Overall Database Performance and Scalability

After analyzing the microarchitectural characteristics, we
finally evaluate the overall performance and scalability of
NoSQL and SQL databases by varying the number of client
threads (see Figure 13). We can observe that MongoDB
performs much worse than the other databases for all YCSB
workloads. MySQL offers the best throughput and latency for
workloads A, B and C, and it is outperformed by Cassandra
and VoltDB with 64 client threads only. However, MySQL
performs significantly worse (in terms of throughput and
latency) than the other databases for the insert workload D.
MySQL database has more constraint checking for adding data
elements and has greater overhead in creating and maintaining
relational meta-data (which also translates to higher instruc-
tion counts). VoltDB and Cassandra have comparably good
performance for workloads A/B/C and perform better than
both MySQL and MongoDB for insert operations. Cassandra is
more optimized for write-intensive workloads and it is evident
in its better performance for the write-heavy workload. For
scan operations, all four databases experience higher execution
latencies. Cassandra has especially poor scan performance as
compared to the other databases. Cassandra did not originally
support scan operations, but later added the functionality. From
its poor performance, it appears that the scan capability of
Cassandra was added with much overhead. VoltDB offers
the best scan performance. Summarizing, although NoSQL
databases are designed for optimized key-value stores, we
observe that SQLs outperform NoSQLs for most operations
and are beaten by NoSQLs only in a few cases (read-intensive
and insert workloads at higher thread counts). Similar obser-
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vations are also made in [20]). NoSQL databases suffer from
greater performance inefficiencies (poor I/D cache and TLB
performance), which limits their performance as compared to
their SQL counterparts. Nonetheless, NoSQL databases are
promising and competitive alternatives to SQL-style databases,
still they are yet to be optimized to fully reach the performance
of contemporary SQL databases.

V. RELATED WORK

Several prior studies [1], [2], [3], [21], [22], [23], [24]
have evaluated the performance of OLTP applications. But
they were performed on machines of more than 12 to 15 years
ago. Significant advances have taken place in computer system
designs since then. Moreover, the big-data revolution has
caused a surge in the number and diversity of data management
applications. In its light, we evaluate the performance of four
popular NoSQL/SQL databases on modern computer systems.

Few recent research studies [8], [9], [10], [25] have eval-
uated the microarchitectural performance of big-data applica-
tions. Cloudsuite [8] and BigDataBench [9] present a range of
big-data applications and evaluate them using an extensive set
of microarchitectural parameters. However, they restricted the
representation of the data-serving class of applications using
one or two databases running at most a single operation. This
paper expands performance characterization of data-serving
databases to greater detail and to the best of our knowledge,
no prior work has compared the hardware performance impli-
cations of different NoSQL/SQL databases.

Many researchers [26], [27] have compared SQL and
NoSQL systems qualitatively by exploring their respective
technologies and impact. Several other research studies [26],
[20], [14], [28], [29], [30] have compared client-side execu-
tion time performance of SQL and NoSQL systems, making
observations on their overall performance at a higher level. But
there is no clear consensus among the studies regarding which
system (SQL or NoSQL) is better.

VI. CONCLUSION

In this paper, we evaluated four modern NoSQL/SQL
databases: Cassandra, MongoDB, MySQL and VoltDB in order
to analyze their performance characteristics on contemporary
processors. In general, we found that cache and memory
system are the biggest limiters of database performance.
Databases commonly exhibit data access patterns and working
set sizes that reduce performance of the data caches and
processor back-end. We also observed that as compared to
other application classes, data-serving applications suffer from
significantly poor front-end performance. What is most inter-
esting to observe is that even though database performance is
severely limited by the memory subsystem, dynamic execution
techniques (e.g. out-of-ordering and speculative execution)
help in hiding a significant fraction of the overall stalls.
We identify several such performance bottlenecks and make
recommendations to improve database performance efficiency.

We also showed that NoSQL databases face greater bottle-
necks (poor I/D cache and TLB performance) as compared to
their SQL counterparts. As a result, although NoSQL databases
are designed for optimized key-value stores, SQL databases
still outperform NoSQL databases for most operations and are
beaten by NoSQL databases only in a few cases. Nonetheless,
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NoSQL databases are promising, competitive alternatives to
SQL-style databases, however, NoSQLs are yet to be optimized
to fully reach the performance of contemporary SQL databases.

Also, as significant performance variability exists between
different database implementations even for the same oper-
ations, we conclude that multiple benchmarks are necessary
to encapsulate the full performance spectrum of data-serving
workloads. We also compared SQL/NoSQL databases with
three popular benchmark suites. Cache/memory performance
of data-serving applications is closest to the SPECjbb bench-
mark and mcf benchmark from SPEC CPU2006.
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