
GPU Initiated OpenSHMEM: Correct and Eicient
Intra-Kernel Networking for dGPUs

Khaled Hamidouche
Advanced Micro Devices, Inc.

Khaled.Hamidouche@amd.com

Michael LeBeane
Advanced Micro Devices, Inc.

Michael.Lebeane@amd.com

Abstract

Current state-of-the-art in GPU networking utilizes a host-

centric, kernel-boundary communication model that reduces

performance and increases code complexity. To address these

concerns, recent works have explored performing network

operations from within a GPU kernel itself. However, these

approaches typically involve the CPU in the critical path,

which leads to high latency and ineicient utilization of

network and/or GPU resources.

In this work, we introduce GPU Initiated OpenSHMEM

(GIO), a new intra-kernel PGAS programming model and

runtime that enables GPUs to communicate directly with a

NIC without the intervention of the CPU. We accomplish

this by exploring the GPU’s coarse-grained memory model

and correcting semantic mismatches when GPUs wish to

directly interact with the network. GIO also reduces latency

by relying on a novel template-based design to minimize the

overhead of initiating a network operation. We illustrate that

for structured applications like a Jacobi 2D stencil, GIO can

improve application performance by up to 40% compared to

traditional kernel-boundary networking. Furthermore, we

demonstrate that on irregular applications like Sparse Tri-

angular Solve (SpTS), GIO provides up to 44% improvement

compared to existing intra-kernel networking schemes.

CCS Concepts · Computer systems organization →

Heterogeneous (hybrid) systems; · Networks → Pro-

gramming interface; · Computing methodologies →

Distributed programming languages;

Keywords GPUs, Distributed programmingmodels, RDMA

networks

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for proit or commercial advantage and that copies bear

this notice and the full citation on the irst page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior speciic permission and/or a fee. Request

permissions from permissions@acm.org.

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6818-6/20/02. . . $15.00

htps://doi.org/10.1145/3332466.3374544

1 Introduction

GPU-enabled clusters provide high levels of performance

and power eiciency for many classes of data-parallel work-

loads [24]. High Performance Computing (HPC) in particu-

lar leverages the unique performance and power proile of

modern GPUs to accelerate over 125 of the top 500 super-

computers [38].

HPC systems that employ GPUs typically do so across

many compute nodes and use high-performance network

adapters to communicate between them. Both the data path

and pieces of the control path of remote GPU networking op-

erations have been optimized using peer-to-peer data trans-

fers from a GPU’s discrete memory to the NIC [19] and using

direct initiation of network operations by the GPU’s front

end [1, 35], respectively.

Unfortunately, traditional multi-node GPU systems re-

strict communications to kernel boundaries, which forces

the programmer to think about communication separately

from computation instead of embedding network runtime

calls directly within the kernel itself. This restriction can

lead to an increase in algorithm complexity and a decrease

in programmer productivity. Additionally, the performance

of inter-kernel networking strategies is often poor due to

the high cost of starting and ending a GPU kernel. GPU ker-

nel launch overheads have been shown to take upwards of

20µs [15]; this is an order of magnitude greater than modern

network latencies of approximately 0.7µs [21].

Recently, researchers have explored methods to overcome

the high overheads of ending a kernel by initiating net-

work communication directly from the kernel itself [7, 8, 12ś

16, 28, 29, 31, 33, 37]. These and other research projects at-

tempt to provide a Message Passing Interface (MPI) [22]

or OpenSHMEM [6] programming model that is directly

callable from the GPU shader code. Similarly, other works

like NVSHMEM [34] have investigated porting the OpenSH-

MEM programming model to GPUs. However, they currently

focus solely on a single node and do not investigate the in-

teraction between GPUs and NICs.

While prior investigations propose diferent approaches

that optimize various facets of GPU networking, they share

two common drawbacks:

• High Latency: Initiating a network operation involves

two main steps: 1) the creation and posting of the net-

work command packet and 2) the ringing of the NIC’s

336

https://doi.org/10.1145/3332466.3374544

PPoPP ’20, February 22ś26, 2020, San Diego, CA, USA K. Hamidouche et al.

doorbell. Both of these steps are sequential memory op-

erations which are not eiciently mappable to the GPU’s

Single Instruction, Multiple Thread (SIMT) execution style.

This limitation is especially true for the creation of the

network packet, which can increase latency by an order of

magnitude over the latency of the network itself [7, 28].

• Data Visibility and Ordering Issues: GPUs use a re-

laxed memory consistency model [2], where data is vis-

ible and ordered with respect to agents external to the

GPU only at kernel boundaries. As part of a kernel’s tear-

down/launch procedure, the driver and GPU irmware is-

sue fences and cache invalidations so that GPU-produced

data can be accessed by external agents. To overcome

this limitation for intra-kernel networking, most prior

work relies on the CPU to initiate coherence actions to

ensure correct data [37]. Some works do not use the CPU

in this manner, but report intermittent data validation er-

rors due to violating the memory consistency model of

the GPU [26, 33]. The need for CPU intervention on the

critical path of communication mitigates much of the per-

formance improvements derived from enabling the GPU

to communicate directly with the NIC.

In this work, we propose GPU Initiated OpenSHMEM

(GIO), a GPU-centric PGAS programming model that ele-

vates the GPU to a irst class citizen in distributed systems.

We investigate the root cause of a GPU’s kernel-boundary

memory visibility constraints and its mismatch with the se-

mantics required for intra-kernel networking. We then pro-

pose practical system designs and techniques to overcome

these limitations. GIO also proposes a novel runtime design

and techniques for low-latency, GPU-initiated communica-

tion. The proposed GIO runtime enables tight integration

of the GPU memory system with the NIC. To alleviate the

latency issues of existing solutions [7, 28], our runtime intro-

duces a new network packet templating approach to reduce

the largely serial overhead of populating the network com-

mand packets from the GPU.

While some existing works, such as NVSHMEM [33, 34],

proposed GPU support for OpenSHMEM on a single node,

we believe removing the GPU-NIC interaction oversimpliies

the challenges as GPU-to-GPU communications (via PCIe®

or a proprietary GPU-centric network) do not have the same

data ordering and visibility issues as GPU-to-NIC interac-

tions. Techniques such as those provided by NVSHMEM can

directly access the memory of other GPUs through a sim-

ple sequence of load and store operations with appropriate

memory fences. Providing data to a NIC is signiicantly more

challenging, as networks employ complex command queues

and, as previously mentioned, ordering and visibility oper-

ations may not be available from within a GPU kernel for

non-GPU devices. This paper investigates this challenging

GPU-to-NIC interaction. To the extent of our knowledge,

this is the irst paper presenting a runtime designs that truly

removes the CPU from the critical path and brings the GPU

as irst class-citizen without data ordering or visibility issues.

This paper presents the following contributions:

• Analyzing the GPU’s coarse-grained memory consistency

model and its mismatchwith intra-kernel GPU networking

requirements.

• Proposing system- and runtime-level designs to overcome

such memory consistency limitations.

• Designing GPU initiated networking using a template-

based approach to minimize message latency.

• Co-designing application kernels to demonstrate the im-

pact and beneits of the GIO programming model and

runtime.

2 Background

This section describes basic GPU and networking terminol-

ogy critical to the understanding of GIO. Readers familiar

with these concepts are encouraged to skip to Section 3.

Local Data Share

L2 Cache

GPU Memory (HBM)

Compute Unit

L1 Cache

SIMD SIMD SIMD SIMD

Unordered DF

Per CU

Scratchpads

(SW Managed)

Per Device

Write-Combing

Cache

(Non-Coherent)

PCIe Path IP Block

(PPB)

Per Device Write-

Combiner and Read

Cache (Non-Coherent)

PCIe Root Complex

Main Memory

(DRAM)

NIC

Figure 1. AMD’s Graphics Core Next (GCN [3]) GPU archi-

tecture with a focus on memory and caches.

.

2.1 GPU Compute Architecture

Figure 1 illustrates the relevant components of a compute

optimized GPU. We use AMD speciic terminology for the

purposes of this paper, but most concepts are directly appli-

cable to Nvidia.

GPUs are comprised of a number of Compute Units (CUs),

each of which are comprised of a collection of Single Instruc-

tion, Multiple Data (SIMD) units. Each CU is connected to

a private L1 cache and shared L2 cache, which are main-

tained by explicit cache management instructions. Groups of

work-items are dispatched on the CUs in bundles known as

wavefronts. These wavefronts are further bundled into work-

groups, which are guaranteed to execute on the same CU

and can therefore make use of fast, per-CU scratch-pad mem-

ory called the Local Data Share (LDS). More speciic details

concerning the GPU’s memory subsystem and consistency

model will be discussed in Section 4.1.

GPUs are programmed by writing code known as ker-

nels. For the purposes of this paper, we will be presenting

code written in the Heterogeneous-compute Interface for

Portability (HIP) [5] language, which has a similar syntax to

CUDA [25].

337

GIO PPoPP ’20, February 22ś26, 2020, San Diego, CA, USA

__host__ void

hostInit ()

{

// 1 Initialize GIO Runtime

gio_shmem_handle_t* gio_shmem_handle;

gio_shmem_init (& gio_shmem_handle);

// 2 Allocate symmetric heap memory

int size = sizeof(char) * ELEMENTS;

char* src = gio_shmem_malloc(size);

char* dst = gio_shmem_malloc(size);

// 3 Initiator/target launches kernel

pe = gio_shmem_my_pe(gio_shmem_handle);

if (pe == INITIATOR) {

hipLaunchKernel(Ping , GRID_SZ ,

GRID_SZ / WG_SZ , 0, 0,

gio_shmem_handle , src , dst);

} else {

// Launch pong kernel (not shown)

}

}

(a) Initialization and host code.

__device__ void

devicePing(gio_shmem_handle_t *gio_shmem_handle

char* src , char* dst)

{

// 4 Extract context from global handle

__shared__ gio_shmem_ctx_t gio_shmem_ctx;

gio_shmem_ctx_create(gio_shmem_handle ,

&gio_shmem_ctx);

// 5 Each WG pings target

gio_shmem_put_nbi(gio_shmem_ctx ,

dst[hipBlockIdx_x],

src[hipBlockIdx_x],

sizeof(char), TARGET);

// 6 Wait on the network completion

gio_shmem_quiet(gio_shmem_ctx);

// 7 Each WG waits for pong target

gio_shmem_wait_until(

dst[hipBlockIdx_x], 1);

gio_shmem_ctx_destroy(gio_shmem_ctx);

}

(b) GPU ping to remote GPU (pong not shown).

Figure 2. GIO remote ping/pong example on the host and the GPU.

2.2 RDMA and OpenSHMEM

Remote Direct Memory Access (RDMA) technology bypasses

the target CPU when performing network operations and is

implemented in many high-performance networking proto-

cols [11, 36]. Using IniniBand terminology, each end-point

interacts with the NIC using command queues. The Send-

Queue (SQ) and Receive-Queue (RQ) are where users post

command packets for theNIC to execute, and the Completion-

Queue (CQ) is where the NIC posts the status of a completed

operation. These structures are often collectively referred to

as a Queue-Pair (QP).

RDMA is often used to implement one-sided communica-

tion semantics, such as those provided by OpenSHMEM [6].

OpenSHMEM is a Partitioned Global Address Space (PGAS)

library speciication that deines many one-sided operations,

such as remote Puts() andGets(), as well as synchronization

primitives and collectives. The key data structure used in

OpenSHMEM is called a symmetric heap. The symmetric

heap is a memory pool where each memory allocation/deal-

location call is a collective operation across all nodes, such

that each node has the exact same variables at the same

ofset in its local heap. Therefore, each node can access an-

other node’s heap by using pointers to variables allocated

on the symmetric heap. In this paper, we have designed GIO

according to the semantics of the OpenSHMEM network

programming standard.

3 GIO Programming Model

GIO implements an OpenSHMEM-based API that is exposed

to the GPU programmer through a device side library. Each

GIO API call (e.g., Put(), Get(), Collective(), etc.) takes the

same arguments as a standard OpenSHMEM 1.4 [6] CPU

implementation (e.g., source, destination, length, etc.)

The HIP programming model is used to implement GIO

and provides a lexible, multi-level granularity corresponding

to diferent collections of threads on the GPU; operations can

be at grid-level, work-group level or even thread-level. For

GIO, our design implements each operation as a work-group

collective, which means that the runtime executes a work-

group barrier after each API call. Work-groups are a natural

granularity to perform networking on a GPU. Any larger

(grid-level), and GIO would need to synchronize across work-

groups, which is expensive and limits the ability for work-

groups to overlap. However, if the application aggregates the

message (sending from a contiguous bufer), one work-group

can send the whole data as a single operation. Any smaller

(thread-level), and the message size would most likely be

too small to saturate the network link when streaming large

messages.

Figure 2 illustrates a simple ping-pong benchmark be-

tween two GPUs. The pong step is omitted since it is similar

to ping and ofers no additional information regarding GIO’s

API. GIO’s API is divided into both host and GPU compo-

nents, which we will discuss in turn.

338

PPoPP ’20, February 22ś26, 2020, San Diego, CA, USA K. Hamidouche et al.

Figure 2a illustrates the host-side API, which is responsible

for initializing the runtime and managing the memory and

resources. First, the host initializes the runtime and creates

a handle for the GPU 1 . This initialization step allocates a

number of network resources (QPs and CQs) and establishes

the connections. It also initiates the OpenSHMEM symmet-

ric heap and saves this information in the global handle. It

is important to note that the symmetric heap is allocated

on GPU memory, similarly to what was done in the prior

work by Hamidouche et al. [9]. More details on the design

and information extracted and stored in the handle will be

discussed in Section 5. Next, the host allocates a network

accessible bufer on the symmetric heap allocated from GPU

memory 2 . Finally, a GPU kernel is launchedwith the handle

and the allocated bufer 3 .

Figure 2b illustrates the GPU-side API for the ping compo-

nent of the ping-pong benchmark, which executes the whole

application algorithm including both the computation and

communication phases. The GPU irst calls an initialization

function with the host-provided handle 4 . This API creates

a private communication context for each work-group. The

context is allocated in LDS memory, since our API is imple-

mented at a work-group level. This avoids accesses to global

memory or increased register pressure to hold network state.

The next two steps perform standard one-sided network

calls to initiate a remote Put() on the target 5 and waits

for the completion of the network operation 6 . Finally the

target waits for the ping that was just sent by the initiator 7 .

Each work-group performs a separate ping operation on an

independent bufer indexed by work-group ID.

4 Intra-Kernel Networking Data
Consistency Issues

This section briely describes the GPU’s memory consistency

model and the main hardware components that govern the

GPU’s interactions with external devices, such as a NIC.

We then discuss the mismatch between the GPU’s memory

consistency model and the GPU-initiated networking vision.

The discussion will largely be focused on the AMD GPU

architecture described in Section 2. However, recent works

have noted similar observations on Nvidia GPUs [1, 27].

4.1 GPU Memory Model and Relevant Hardware

Components

The GPU operates under a relaxed memory model [10] that

may be unfamiliar to many programmers accustomed to the

stronger guarantees ofered by most modern CPUs. Memory

accesses on GPUs correspond to a scope, where the scope de-

ines the level of visibility and ordering requirements of the

GPU data (e.g., work-group, device, and system). To optimize

performance, memory transaction implicitly operate at the

most restrictive scope unless special instructions are used

to change the scope of the memory access. Additionally, to

make data produced at a more local scope visible to a further

away scope, acquire/release markers must be inserted into

the memory access stream. The release operation ensures

that all previous memory operations have been made visible

to the requested scope. The acquire operation ensures that

we see the newest data for all memory operations below

the synchronization point. These markers are compiled into

cache maintenance operations and hardware fences, depend-

ing on the capabilities of the particular device and the scope

of the marker.

In this paper, as we are interested in the visibility of data to

other devices (NIC), so we focus on the scope farthest away

from the GPU: system-scope. System-scope encompasses

data visibility and ordering requirements for devices outside

of the GPU, such as a NIC or host CPU. Unfortunately, cur-

rent GPUs do not have mechanisms to manage system-scope

from within a kernel. System-scope acquire/release markers

map to kernel launch (acquire) and kernel inish (release)

operations performed by CPU driver code and GPU device

irmware.

Figure 1 depicts the GPU memory subsystem and high-

lights the main components that contribute to system-scope

visibility and ordering. The three main components are:

• GPU L2 Cache: GPUs use a shared last level L2 cache

between the diferent CUs. As this L2 cache is shared be-

tween all the SIMD engines, it is used as the coherency

point for all operations at device-scope. The L2 cache is

lushed exclusively at the end of a kernel. On some ar-

chitectures, the GPU Command Processor (CP), the GPU

front-end unit responsible for managing and scheduling

the kernels, has the capability to lush the L2 cache. In

most architectures there is no way to lush the L2 cache

from the GPU shader code.

• GPU PCIe Path IP Block (PPB): As GPUs are typically

PCIe devices, they require an IP Block that handles and

manages all PCIe transactions to GPU memory. In order

to maximize the performance of PCIe accesses, this block

contains a cache for read operations and a write combiner

for write operations. Similarly to the L2 cache, this read

cache is not coherent and is only invalidated at kernel

boundaries.

• Unordered Data Fabric (DF): To maximize throughput,

GPU relaxed memory is designed with an unordered data

fabric. GPUs can order their own memory requests by ex-

plicitly waiting for acknowledgements from the DF before

issuing subsequent requests.

4.2 GPU Memory Model Implications for

Intra-Kernel Networking

In this section, we will discuss the networking requirements

for a GPU initiated networking programming model and the

mismatch with the GPU memory consistency model.

339

GIO PPoPP ’20, February 22ś26, 2020, San Diego, CA, USA

GPU technologies like GPUDirect RDMA [19] and ROCm

RDMA [4] optimize the data path between GPU memory

and RDMA NICs by providing the NIC with the ability to

directly read from/write to GPU memory. However, due to

the GPU memory consistency restrictions imposed by the

behavior of the components described in Section 4.1, network

RDMA operations are limited to kernel boundaries. Correct

data is NOT guaranteed for RDMA operations to/from GPU

memory while a kernel is running [27].

In order to analyze the network requirements and their

mismatch with the current GPUmemory model, consider the

two operations that the network performs on GPU memory

(reads from GPU memory and writes to GPU memory) and

their interactions with the system-scope hardware compo-

nents presented in Section 4.1 .

When a NIC performs a PCIe read operation from GPU

memory, it is routed to the GPU PPB Block. If the requested

data is already in the PPB read cache (i.e., this address was

already read by the CPU or NIC), the NIC will read the data

from the PPB cache and does not access GPU memory. If

the GPU has since produced updated data from the previous

read, the NIC will have an inconsistent view of the data. To

avoid this inconsistency, the PPB cache must be invalidated

before the NIC starts reading data.

If, for the same read operation, the requested data is not

in the PPB cache (or this cache was invalidated), the read

request will be serviced directly from GPU memory. Unfor-

tunately, it is still possible to read inconsistent data, as the

most recent copy could be stuck in the GPU’s non-coherent

L2 cache. Hence, in addition to the PPB invalidation, the L2

cache must also be lushed before the NIC is allowed to read

data from GPU memory.

For write requests to GPU memory, the PPB acts as a

write-combiner (WC), which could re-order the write op-

erations. Furthermore, the GPU DF itself has also the po-

tential to re-order PCIe writes to GPU memory. These re-

ordering points must be ordered when a programmer calls

functions such as the shmem_f ence() operation. Application

writers commonly rely on shmem_f ence() to order bulk data

transfers with respect to a lag to notify the target that the

transfer is complete. Hence a shmem_f ence() operation on

GIO requires a complete lush of the PPB write-combiner.

Furthermore, the NIC itself needs to initiate this lush, as

shmem_f ence() is generally called by the initiator of the

request.

5 GIO Architecture

In this section, we will discuss in detail the diferent designs

and mechanisms that GIO uses to allow the GPU to directly

interact with the NIC without the intervention of the CPU

in the critical path. We irst present the host runtime and

system-level designs to address the memory consistency

challenges described in Section 4.2. Then we discuss the

From

CPU

GIO Global Handle

IO Mapped Memory

DB 0WG

Handles

LDS

Memory

NIC Registers

3

1

GPU Registers

GPU Memory (HBM)

SQ CQ

Ctrl: 0x234

Rkey: 0x10

Lkey: 0x12

5
6

DB 0NIC

Doorbells

DB 0PPB

Registers

42

Figure 3. Illustration of important GIO data structures and

where they are located in memory.

GPU-side runtime architecture and the template approach to

optimize performance and reduce the latency of preparing

network packets by the GPU. Figure 3 highlights the key

data structures that support GIO and where they exist in

memory. We will refer to this igure as we explain how GIO

works.

5.1 CPU-Side Runtime

The CPU handles initialization and management of network

resources as well as network and GPU memory allocations.

As shown in Figure 2, any GIO code will start by initializing

the runtime via the host-side API call, shmem_init(). During

shmem_init(), we perform the steps highlighted in Figure 3

and described here.

We irst create the network resources (i.e., SQ and CQ)

and establish connections between all of them. As GIO uses

a work-group granularity, we create an SQ and a CQ for

each work-group on the GPU. We rely on the IniniBand

Direct-Verbs [32] mechanism to directly interact with the

NIC hardware and driver. We designed callbacks to allow the

NIC driver to allocate these queues on GPUmemory 1 . Next,

we query the NIC driver for the addresses of the queues and

the doorbell associated with each QP. We then expose these

doorbells to the GPU by extracting the physical address and

mapping them into the GPU’s virtual memory subsystem 2 .

This information is stored in a handle structure that we pass

to the GPU-side runtime though the kernel launch 3 . Once

the connections between the diferent QPs are established,

the CPU allocates the symmetric heap on the GPUs and

registers this memory with the NIC to allow direct RDMA

accesses. Similarly, we map the physical address of the PPB’s

memory-mapped control register to both the GPU and NIC

so that both devices may control the PPB 4 . Finally, we

asynchronously prepare the network templates from the

CPU and ill-up each queue as described in Section 5.3 5 .

340

PPoPP ’20, February 22ś26, 2020, San Diego, CA, USA K. Hamidouche et al.

NIC Driver PPB_MAP GPU Driver

insmod gpu_driver

ppb_reg =

map_ppb_reg(gpu_id);

Register PPB_MAP as

CALLBACK

Return VA

Map to GPU VM

Ibv_reg_mr(ppb_reg);

Request PPB registers for

each GPU

Request the PA

Update NIC’s
Page Table

with VA->PA

translation

Kernel Space User Space

Request PPB Mapping

Per GPU

VA->PA

mapping

gio_init()

Figure 4. System-level interactions between GIO runtime, GPU driver and NIC driver.

5.1.1 Exposing and controlling the PPB

In order to expose the PPB’s control registers to the GPU

SIMD engines, we designed and augmented the GPU dri-

ver (amdgpu driver) with a novel feature that we refer to

as PPB_MAP, which maps the PPB’s Memory-Mapped I/O

(MMIO) page to the GPU’s virtual address space. This map-

ping is performed with assistance from the Linux kernel and

the GPU driver, which creates a new entry in the GPU page

table that maps to the same physical address. Furthermore,

to avoid granting the user full access to all GPU MMIO regis-

ters, the GPU driver is updated to extract the PPB’s registers

to an empty page.

As we hinted at in Section 4.2, one-sided programming

models require Write-after-Write (WaW) ordering, which

requires the NIC to access the PPB’s control registers. Usually,

to allow a NIC to access memory, we need to register that

memory with the NIC driver. This registration involves the

NIC driver asking the Linux system to pin thememory region

and provide the Physical Address (PA) associated with the

Virtual Address (VA) of that region. However, as the PPB

registers are MMIO pages, the registration will fail as the

Linux memory-management system does not manage device

MMIO pages.

To circumvent this limitation, the proposed PPB_MAP

provides the PPB’s PA to the driver by intercepting registra-

tion requests. This interception is implemented as a callback

in the NIC driver via the PeerDirect interface [20]. Figure 4

highlights the steps of the interaction between the NIC driver,

GPU driver, PPB_MAP, and GIO runtime. First, at boot/load

time of the GPU driver, PPB_MAP function starts by expos-

ing PPB’s MMIO control registers to users and creates a map

of the PPB’s VA-to-PA translation for each GPU in the node.

Next, we register PPB_MAP as a callback with the NIC dri-

ver. Once the PPB’s MMIO space is registered with the NIC

driver, the driver interacts with PPB_MAP to retrieve the

PA. Then, the NIC driver inserts this VA-to-PA translation

into the NIC’s TLBs to allow it to access the PPB registers

to perform shmem_f ence(), as discussed in Section 4.2. All

of these steps are performed during module load or during

the CPU-side GIO runtime initialization and are out of the

critical path of execution.

5.1.2 Bypassing the GPU’s L2 Cache

As discussed in Section 4.2, the GPU’s L2 cache is not co-

herent with the rest of the system. Unfortunately, unlike

the PPB, there are no MMIO registers that can be used to

lush the L2 cache, and launching a new kernel solely for the

purpose of lushing the L2 cache is too high of an overhead.

In order to satisfy the need to bypass the GPU’s L2 cache

for data that is accessed by the network for RDMA opera-

tions, the GPU driver is extended to provide the ability to

allocate GPU memory with uncacheable pages (UC). For UC

pages, stores and loads from the SIMDs will bypass the L2

and go directly to memory. This can potentially degrade the

performance of the application, and we explore the impact

of using uncached pages in Section 6.

Most of PPB_MAP and the UC page mapping feature is

already available in the amdgpu driver starting with ROCm

2.5.

5.2 GPU-Side Runtime

In order to reduce memory access latency to the handle, dur-

ing GPU runtime initialization each work-group copies the

appropriate handle information from GPU global memory

to LDS scratchpad memory as shown in 6 of Figure 3. We

then use this local handle as the OpenSHMEM context that

we pass for each OpenSHMEM API call. In addition to the

information about the network queues, NIC doorbells, and

the PPB registers, the local context keeps track the queues’

indices.

When a GPU work-group performs an OpenSHMEM call

which translates to a network operation, it irst locates the

341

GIO PPoPP ’20, February 22ś26, 2020, San Diego, CA, USA

position of the next network command packet in its SQ and

updates the packet with the dynamic information. Second, it

will invalidate the PPB cache by performing awrite operation

to the PPB’s control registers, which will lush the GPU’s

L2 cache. Finally, the work-group rings the NIC’s doorbell

associated with the SQ.

Similarly, when a work-group waits on a network oper-

ation to complete via the shmem_quiet() API, it locates the

next entry in the CQ and polls on that memory waiting for

the NIC to write the completion command.

As suggested in Section 4.2, in order to guarantee order

at the remote GPU during a shmem_f ence() operation, we

implement shmem_f ence() as an RDMA write operation to

the remote GPU’s PPB register to lush its PPB cache.

5.3 GIO Network Templating Design

As mentioned in Section 1, previous work on native GPU

networking investigated porting the entire networking stack

to a GPU [7, 28]. These designs possess a very high latency

to initiate communication from the GPU. The reasons for the

high latency are because preparing a network packet is pre-

dominantly a sequential series of memory store operations to

ill up the diferent ields of a packet. These accesses are per-

formed by a single thread of execution on the GPU. While

GPUs are designed to hide memory latency to maximize

throughput across threads, they struggle to hide the latency

of a sequence of memory operations in a single thread.

To avoid this high latency, we propose a design that relies

on templating and pre-posting the network packets from

the CPU. The main idea derives from the fact that most

of the information required to construct a network packet

is static and known at runtime initialization; only a few

pieces of information are dynamic such as the src address,

dst address, and size. Our current design uses the CPU to

prepare templates of the network packets containing the

static information out of the critical path. This frees the GPU

thread to simply update the dynamic packet information and

ring the NIC’s doorbell. With templating, the GPU thread

now just performs a few stores, signiicantly reducing the

latency to initiate a network operation.

6 Evaluation

In this section, we evaluate GIO performance and beneits

on diferent workloads which exhibit diferent patterns and

behaviors. First, we start with the standard network-based,

micro-benchmark evaluation. Then, we explore a Jacobi 2D

stencil application to evaluate the impact of GIO on struc-

tured communication patterns. Finally, we evaluate irregular

communication patterns using a Sparse Triangular Solver

(SpTS).

6.1 Experimental Setup

While the proposed concepts are generic and applicable

for most GPU systems, our implementation uses the AMD

ROCm GPU compute platform. Unfortunately, as the designs

require driver and runtime patches, we are limited to a maxi-

mum of four nodes for our studies. Each node is comprised of

dual socket 10-core CPUs with an AMD Radeon MI25 GPU

running ROCm version 2.4. The nodes are connected with a

Connect-X4 IniniBand network running theMellanox OFED

4.5 stack.

For our experiments, we deine the following terminology

to describe various baselines of interest:

GPU InitiatedOpenSHMEM (GIO): The proposed GPU

Initiated OpenSHMEM design where communication is per-

formed directly within the kernel using network packet tem-

plating. It includes all of the features discussed in Section 5.

Existing Intra-Kernel Networking (IKN): Representa-

tive of existing intra-kernel networking approaches [8, 16,

31] that rely on CPU threads to perform network operations

on behalf of the GPU. While IKN utilizes the same basic de-

sign as existing intra-kernel networking solutions, it does

include the techniques described in Section 5 to ensure data

correctness. It is important to note that our reference ver-

sion of IKN delivers better performance (lower latency) than

existing original approaches [7, 12ś14, 28, 29].

Inter-K: Traditional GPU networking mode where the

CPU owns the network control path. Kernels are launched

by the host to perform computation, and all networking is

routed through CPU-centric MPI calls at kernel boundaries.

Inter-K-Overlap: Advanced GPU kernel-boundary net-

working model where communication is still performed at

kernel boundaries, however, the code structure is enhanced

to exploit computation/communication overlap using asyn-

chronous MPI calls and multi-stream GPU techniques.

6.2 Microbenchmarks

In this section, we describe GIO performance with a network-

centric microbenchmark that measures the latency of re-

mote Put() operations (all implementations can achieve peak

throughput, so bandwidth analysis is omitted). For the intra-

kernel versions (GIO and IKN), we have redesigned the

benchmark to be GPU-centric, where the network operations

are performed inside the GPU kernel. The Inter-K version

of the benchmark does not perform any computation (no

kernel is launched). It is equivalent to the CPU version of the

benchmark with the exception that the data is placed in GPU

memory. Finally, a modiied version of Inter-K that includes

the overhead of starting an empty kernel is included in the

evaluation (Inter-K-Empty).

Figure 5a shows the latency of a single work-group per-

forming remote Put() network operations of varying payload

sizes across the diferent versions (Inter-K, Inter-K-Empty,

IKN, and GIO). As expected, compared to the CPU version

342

PPoPP ’20, February 22ś26, 2020, San Diego, CA, USA K. Hamidouche et al.

0

5

10

15

20

25

1 2 4 8 16 32 64

L
at

en
cy

 (
µ

s)

Message Size (Bytes)

Inter-K Inter-K-Empty IKN GIO

(a) Put latency sweep of payload size for a single WG.

1

10

100

1000

10000

100000

#2 #4 #8 #16 #32 #64

L
at

en
cy

 (
µ

s)
 L

o
g

 S
ca

le

Number of WGs

4 8 8K 16K 256K 512K

(b) Put latency sweep of WGs with multiple message sizes.

Figure 5.Microbenchmark evaluation of GIO versus other baselines.

without any GPU (Inter-K), GIO is slightly behind in latency

with 5.15µs compared to 2.8µs for 4 bytes. This is because a

GPU thread is signiicantly slower than a CPU thread.

However, GIO provides 2X latency improvement com-

pared to IKN. This comparison assesses the eiciency and

the impact of 1) the template-based design and 2) the direct

GPU-NIC interaction on reducing the latency of initiating the

network operation. Similarly, compared to Inter-K-Empty,

GIO shows up to 3X improvement in latency as it avoids the

overhead of starting/ending a kernel for the sole purpose of

performing network operations.

Figure 5b sweeps the Put() latency of GIO using multiple

work-groups across multiple message sizes. In this example,

each work-group is comprised of a single wavefront. From

the igure, we see that the latency of an individual work-

group is not signiicantly afected by the number of other

work-groups resident on the GPU as long as the network

is not saturated. We believe this is due to each work-group

possessing independent network resources, such as QPs. For

larger message sizes, the number of work-groups can impact

the latency perceived by an individual work-group. This

trend is because the network itself becomes the limiting

factor, and increasing the number of work-groups that need

to communicate with the network will eventually result in

work-groups waiting for network resources.

6.3 Jacobi 2D Stencil

This section evaluates the performance of GIO over a Jacobi

relaxation problem. In Jacobi, a series of operations are per-

formed on a local data set, followed by a halo exchange of

neighboring data. In our example, a two-dimensional stencil

is split in two dimensions over all participating nodes. The

algorithm follows three main phases. First, the next value

of the local stencil is calculated (either on the GPU or the

host). Each element in the stencil updates its value based on

the values of each of its 4 neighbors. Next, the halo region is

exchanged with a node’s adjacent peers. Finally, a residual is

reduced over the stencil to determine whether to continue

the relaxation. As Jacobi exhibits a regular communication

pattern, the main goal of this section is to study the impact

of GIO on structured applications.

In the GIO version of Jacobi, the host is no longer needed

beyond data preparation. Since we can now perform net-

work transfers from within a kernel, the main relaxation

loop can be moved onto the GPU. Additionally, work-groups

that perform a halo exchange on the edge of the stencil

can automatically overlap with work-groups on the inte-

rior. Without intra-kernel networking, this overlap would

need to be performed using an exterior and interior kernel

each on its own stream. Explicit synchronization between

the streams and MPI communication is also required; this

increases the complexity of the algorithm and impacts the

productivity of the programmer. The Inter-K-Overlap base-

line is representative of the multi-stream overlap technique.

Some results also include a CPU version that performs the

whole Jacobi relaxation on the CPU using OpenMP with 20

threads per node. The main objective in including the CPU

version in this evaluation is to validate that the problem size

is big enough to require using GPUs.

0.5

0.7

0.9

1.1

1.3

1.5

#1 #2 #3 #4

E
x
ec

u
ti

o
n
 T

im
e

(s
ec

)

Number of GPU Nodes

Inter-K Inter-K-Overlap IKN GIO

Figure 6. Weak scaling Jacobi Stencil for diferent GPU net-

working techniques with 2K * 2K problem size per GPU.

Figure 6 compares the execution time of the diferent Ja-

cobi GPU networking versions on 1-4 nodes containing a

single GPU each. This experiment illustrates weak-scaling

where each GPU uses a ixed 2K * 2K elements problem

size (each element is 8 bytes). The results indicate that GIO

performs best and demonstrates linear performance scaling

relative to the number of nodes. GIO outperforms the basic

GPU Inter-K version by up to 40% with 4 GPU nodes. This

performance uplift is because GIO was able to transparently

overlap the computation and the communication without

any explicit efort from the user. As suggested earlier, with

a signiicant programming efort and a higher algorithm

343

GIO PPoPP ’20, February 22ś26, 2020, San Diego, CA, USA

complexity, Inter-K-Overlap is able to overlap the commu-

nication time and achieve comparable scaling to the GIO

version. Similarly, GIO also outperforms IKN, which exhibits

a slight disadvantage compared to Inter-K due to the high

overhead in CPU-GPU synchronization to perform the com-

munication.

0

1

2

3

4

 #1 #2 #3 #4R
el

at
iv

e
E

x
ec

u
ti

o
n
 T

im
e

to
 I

n
te

r-
K

Number of GPU Nodes

CPU (Comp) CPU (Comm) Inter-K (Comp)
Inter-K (K.L.O) Inter-K (Comm) Inter-K-Overlap
IKN GIO

Figure 7. Jacobi Stencil performance breakdown with 2K *

2K problem size per GPU.

Figure 7 further decomposes the execution time to high-

light where GIO performance beneits come from. For the

GPU base version (Inter-K), we stack the execution time as

computation (Comp), communication (Comm) and Kernel

Launch Overhead (KLO). These components can be summed

to equal total execution time since there is no communica-

tion/computation overlap in Inter-K. It illustrates the relative

scaling results of Jacobi relaxation across all of our exper-

imental conigurations normalized to the Inter-K version

(sum of Inter-K (comp), Inter-K (comm), Inter-K (K.L.O)).

The CPU version performs the worst which indicates that

the input size is big enough to oload to GPUs. Compared to

Inter-K and Inter-K-Overlap versions, we can see that GIO

beneits come from the computation/communication over-

lap. Furthermore, as GIO uses a single kernel, it was able to

remove the overhead of launching a kernel that both Inter-K

and Inter-K-Overlap incur.

0

0.5

1

1.5

2

2.5

3

 1K*1K 2K*2K 4K*4K

E
x
ec

u
ti

o
n
 T

im
e

(s
ec

)

Problem Input Size (Elements)

Inter-K (Comp) Inter-K (K.L.O) Inter-K (Comm) IKN GIO

Figure 8. Performance of the diferent GPU networking

techniques on various stencil sizes.

Figure 8 compares GIO to Inter-K and IKN on a 4 node clus-

ter using diferent input problem sizes. We note four obser-

vations: 1) GIO outperforms both Inter-K and IKN versions

for all input sizes as it hides both communication and kernel

launch overheads. 2) Compared to Inter-K, GIO demonstrates

57%, 40% and 18% performance uplift for 1K*1K, 2K*2K and

4K*4K elements input sizes, respectively. Compared to IKN,

GIO provides even more beneits with 3X, 45% and 20% im-

provements for 1K*1K, 2K*2K and 4K*4K input sizes, re-

spectively. As expected the gain is reduced as the ratio of

computation to communication increases with larger prob-

lem sizes. 3) The GIO runtime has a negligible overhead in

GPU compute time as it exhibits similar performance to the

Inter-K computation phase. This is an important observation

as it illustrates that the overhead of the GIO GPU-side run-

time does not signiicantly impact the compute portion of

the application. 4) IKN performs the worst as its communica-

tion overhead is too high. However, its disadvantage reduces

with increasing input size as communication becomes less

of a contributing factor to the overall execution time.

Figure 9. SpTS algorithm illustration where the colored ar-

rows represent dependencies.

6.4 Sparse Triangular Solver (SpTS)

Our formulation of SpTS solves for the vector x in the equa-

tionA x = y wherematrixA is a sparse matrix and y is a dense

vector. Both A and y are provided as inputs. The sparsity

of A is the key property which makes it attractive for GPU

execution. A sparse A matrix contains relatively few non-

zero values, and thus has fewer dependencies between rows

which provides signiicant opportunity for parallel solving

of the rows.

To make the properties of the algorithm more concrete,

Figure 9 illustrates a simple example of the dependencies

in a common iteration of SpTS where the colored arrows

represent dependencies that need to be resolved before an

individual row can be computed. As we can see from the

igure, rows 0 and 1 are completely independent of each

other and can thus be solved in parallel. Once the results for

x0 are known, x2 and x3 also operate independently. Finally,

x4 can be solved once the values of x3 and x1 are computed.

Recently, a new class of GPU-aware algorithms for SpTS

have been proposed [17]. These so-called sync-free algo-

rithms operate in a pure data low manner and dynamically

discover dependencies as needed. Each wavefront on the

GPU is assigned a row to solve, and wavefronts poll on val-

ues in memory to check if their dependencies have been sat-

isied. Wavefronts which have their dependencies satisied

compute xn corresponding to their row and notify waiting

wavefronts by using properly scoped memory operations.

In the single GPU case, wavefronts in the same work-group

344

PPoPP ’20, February 22ś26, 2020, San Diego, CA, USA K. Hamidouche et al.

WikiTalk ASIC_320ks nlpkkt160 Road_usa Road_central

NNZ 3.072M 1.074M 118.9M 52.80M 31.02M

Rows 2.394M .321M 8.345M 23.95M 14.08M

Table 1. Characteristics of the input matrices for Sparse Triangular Solver (SpTS) Application

0

25

50

75

100

1 2 3 4

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

Number of GPU Nodes

ASIC_320ks

GIO IKN
0

50

100

150

200

1 2 3 4

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

Number of GPU Nodes

WikiTalk

GIO IKN
0

150

300

450

600

1 2 3 4

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

Number of GPU Nodes

nlpkkt160

GIO IKN

0

300

600

900

1200

1 2 3 4

E
x

ec
u
ti

o
n
 T

im
e

(m
s)

Number of GPU Nodes

road_usa

GIO IKN
0

200

400

600

800

1 2 3 4
E

x
ec

u
ti

o
n

 T
im

e
(m

s)

Number of GPU Nodes

road_central

GIO IKN

Figure 10. Performance evaluation with Sparse Triangular Solver (SpTS) Application.

communicate values through LDS memory, and wavefronts

on the same GPU but diferent work-groups communicate

through the shared L2 cache (or GPU global memory).

Directly distributing the single-node sync-free algorithm

is not efective with kernel-boundary communication. As

the dependencies are unknown, execution is efectively seri-

alized to a single GPU at a time. Using a block-cyclic data

decomposition, each GPU would solve its portion of the ma-

trix and send the results to the GPU that is assigned the next

block in the matrix. This algorithm is expected to perform

worse than a single node implementation.

Using an intra-kernel networking programming model

such as GIO or IKN, the sync-free algorithm can be trivially

extended across multiple nodes, since it is easy to extend

the existing scoped communication model using PGAS se-

mantics. Applications that exhibit irregular and dynamic

communication patterns such as SpTS are the perfect match

for intra-kernel communicationmodels. In addition to perfor-

mance, such a programming model maximizes productivity

as the parallel algorithm complexity is a simple extension of

the single GPU version.

For the SpTS evaluation, we use a variety of sparse ma-

trices from diferent problem domains [17, 18, 23]. Table 1

highlights the basic information that afects the computation

time such as the number of non-zero (NNZ) elements and

the number of rows in the matrix.

For our analysis, we focus on the performance and scal-

ability evaluation of GIO version as well as its comparison

to the competing IKN version. Figure 10 shows the perfor-

mance and scalability of GIO and IKN using 1, 2, 3 and 4 GPU

0

0.5

1

1.5

2

2.5

3

WikiTalk ASIC_320ks nlpkkt160 road_usa road_central

G
IO

 S
p

ee
d
 U

p
 v

s
IK

N

Input Matrix

2 3 4

3.7

Figure 11. Speedup evaluation of GIO compared to IKN.

nodes. The igure shows a graph for each input matrix. For

small input matrices, as the communication time overtakes

the computation, scalability is very limited and decreases

for more than 2 nodes. However, for medium and large in-

put matrices, GIO demonstrates excellent scalability with

a maximum speedup of 2.8 on 4 GPU nodes (70% parallel

eiciency). For instance, with the road_central matrix, GIO

reduces the execution time from 557 ms on single node to

196 ms on 4 GPU nodes.

Compared to IKN, GIO demonstrates a signiicant boost in

performance. Even on a single GPU, GIO outperforms IKN,

which veriies the low overhead of the GIO runtime com-

pared to IKN. Furthermore, as shown in Figure 11, for small

matrices like ASIC_320ks, GIO shows up to 3.7X improve-

ment on 2 nodes and more than 30% on 4 nodes. For large

matrices, thanks to GIO’s low latency network operations,

the beneits are more signiicant as they increase with scale.

For road_central, we show 38%, 35% and 44% improvement

on 2, 3 and 4 GPU nodes, respectively.

345

GIO PPoPP ’20, February 22ś26, 2020, San Diego, CA, USA

WikiTalk ASIC_320ks nlpkkt160 Road_usa Road_central

L2 OFF (ms) 88.03 24.94 419.9 1078.9 557.7

L2 ON (ms) 87.14 23.56 380.7 1003.2 541.4

Overhead (%) 1 5.5 9.3 7 2.9

Table 2. Impact of disabling the GPU’s L2 cache for communication bufers with SpTS.

One potential source of performance degradation for GIO

is the need to bypass the GPU’s L2 cache for network bufers,

as discussed in Section 5.1.2. To evaluate the impact and over-

head of bypassing the L2 cache, Table 2 shows the perfor-

mance of the SpTS application with diferent input matrices

on a single GPU when the L2 cache is enabled and disabled

for the communication bufers. While the impact is minimal

for this application and does not exceed a 9% overhead, we

encourage next generation GPU hardware to provide iner-

grained control and management of the L2 cache for a more

natural GPU-NIC interaction.

7 Related Work

There are a number of works that support GPU networking

through helper threads on the host CPU. GPUNet [12] pro-

vides a socket-based abstraction for GPUs. Both Distributed

Computing for GPU Networks (DCGN) [37] and dCUDA [8]

implement a device-side MPI RMA semantics for GPU ker-

nels that relies on CPU threads to perform the network op-

erations. Gravel [31] optimizes irregular GPU messaging

applications by employing host-side coalescing of network

operations. However, Gravel focuses solely on APUs.

Other recent works implement intra-kernel networking

while avoiding CPU helper threads. GPU-TN [15] provides

an intra-kernel networking scheme by using a mechanism

based on Portals 4 triggered operations [36]. Similarly, ComP-

Net [16] investigate an integrated programmable processor

on the GPU to handle the communication. However, both

these papers are simulation works that rely on hardware

extensions to the NIC or GPU. GPU Global Address Space

(GGAS) [28] implements intra-kernel networking by adding

explicit hardware in the GPU to support a cluster-wide global

address space. Oden et al. [30], GPUrdma [7], and Potluri

et al. [33] all explore techniques to implement IniniBand

entirely on the GPU. Unfortunately, these works have chal-

lenges with performance [30] and data visibility [7, 33] re-

lated to the GPU’s relaxed memory consistency model as

mentioned in Section 1.

8 Conclusion

In this work, we proposed GIO, a new GPU-centric dis-

tributed programming model and runtime that uses intra-

kernel networking to enable GPUs as irst-class citizen on the

network. Using a novel network packet templating approach,

GIO improves the latency of GPU initiated communication.

Furthermore, this paper analyzed the memory consistency

challenges when sharing data between GPUs and NICs. We

described the GIO programming model, runtime and sys-

tem level designs to overcome these imitations and optimize

GPU initiated networking. Overall, we show that GIO can

improve application productivity and performance of both

regular and irregular applications. For stencil-like applica-

tions, we showed up to 40% performance improvement. For

irregular applications such as Sparse Triangular Solve (SpTS),

we demonstrated that GIO was able to deliver up to 44% im-

provement compared to existing intra-kernel Networking

designs. Furthermore, GIO achieves up-to 70% parallel ei-

ciency versus a single node design.

GIO is an exciting irst-step to elevate the GPU to a irst-

class citizen on the network. As such, we plan on continuing

to study GIO as future work. One interesting area of study

involves designing and porting more applications to use GIO.

We also wish to further highlight the scalability of GIO on

large scale systems.

Copyrights and Trademarks

©2020 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD

Arrow logo, AMD Radeon™, and combinations thereof are trademarks of

Advanced Micro Devices, Inc. Other product names used in this publication

are for identiication purposes only and may be trademarks of their respec-

tive companies. PCIe is a registered trademark of PCI-SIG Corporation.

References
[1] Elena Agostini, Davide Rossetti, and Sreeram Potluri. 2017. Oloading

Communication Control Logic in GPU Accelerated Applications. In

Intl. Symp. on Cluster, Cloud and Grid Computing (CCGrid).

[2] Johnathan Alsop, Marc S. Orr, Bradford M. Beckmann, and David A.

Wood. 2016. Lazy release consistency for GPUs. In Intl. Symp. on

Microarchitecture (MICRO).

[3] AMD. 2017. Graphics Core Next Architecture, Gener-

ation 3 ISA. htp://gpuopen.com/compute-product/

amd-gcn3-isa-architecture-manual/

[4] AMD. 2017. ROCn RDMA. htps://github.com/rocmarchive/

ROCnRDMA

[5] AMD. 2018. HIP: Heterogeneous-computing Interface for Portability.

htp://rocm-developer-tools.github.io/HIP/

[6] Matthew Baker, Swen Boehm, Aurelien Bouteiller, Barbara Chap-

man, Robert Cernohous, James Culhane, Tony Curtis, James Dinan,

Mike Dubman, Karl Feind, Manjunath Gorentla Venkata, Max Gross-

man, Khaled Hamidouche, Jef Hammond, Yossi Itigin, Bryant Lam,

David Knaak, Jef Kuehn, Jens Manser, Tifany M. Mintz, David Ozog,

Nicholas Park, Steve Poole, Wendy Poole, Swaroop Pophale, Sreeram

Potluri, Howard Pritchard, Naveen Ravichandrasekaran, Michael Ray-

mond, James Ross, Pavel Shamis, Sameer Shende, and Lauren Smith.

2018. OpenSHMEM Speciication. htp://openshmem.org/site/sites/

default/site_files/OpenSHMEM-1.4.pdf

346

http://gpuopen.com/compute-product/amd-gcn3-isa-architecture-manual/
http://gpuopen.com/compute-product/amd-gcn3-isa-architecture-manual/
https://github.com/rocmarchive/ROCnRDMA
https://github.com/rocmarchive/ROCnRDMA
http://rocm-developer-tools.github.io/HIP/
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf

PPoPP ’20, February 22ś26, 2020, San Diego, CA, USA K. Hamidouche et al.

[7] Feras Daoud, AmirWatad, andMark Silberstein. 2016. GPUrdma: GPU-

side Library for High Performance Networking from GPU Kernels. In

Intl. Workshop on Runtime and Operating Systems for Supercomputers

(ROSS). 6:1ś6:8.

[8] Tobias Gysi, Jeremia Bär, and Torsten Hoeler. 2016. dCUDA: Hardware

Supported Overlap of Computation and Communication. In Intl. Conf.

for High Performance Computing, Networking, Storage and Analysis

(SC).

[9] Khaled Hamidouche, Akshay Venkatesh, Ammar Ahmad Awan, Hari

Subramoni, Ching-Hsiang Chu, and Dhabaleswar K. Panda. 2016.

CUDA-Aware OpenSHMEM: Extensions and Designs for High Perfor-

mance OpenSHMEM on GPU Clusters. Parallel Computing 58 (2016),

27ś36.

[10] Derek R. Hower, Blake A. Hechtman, Bradford M. Beckmann, Bene-

dict R. Gaster, Mark D. Hill, Steven K. Reinhardt, and David A. Wood.

2014. Heterogeneous-race-free Memory Models. In Intl. Conf. on Ar-

chitectural Support for Programming Languages and Operating Systems

(ASPLOS).

[11] IniniBand Trade Association. 2000. IniniBand Architecture Speciica-

tion: Release 1.0.2. htp://www.infinibandta.org/content/pages.php?

pg=technology_download

[12] Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, Emmett Witchel,

Amir Wated, and Mark Silberstein. 2014. GPUnet: Networking Ab-

stractions for GPU Programs. In USENIX Conf. on Operating Systems

Design and Implementation (OSDI). 201ś216.

[13] Benjamin Klenk, Lena Oden, and Holger Froning. 2014. Analyzing

Put/Get APIs for Thread-Collaborative Processors. In Intl. Conf. on

Parallel Processing (ICPP) Workshops.

[14] Benjamin Klenk, Lena Oden, and Holger Froning. 2015. Analyzing

Communication Models for Distributed Thread-collaborative Proces-

sors in Terms of Energy and Time. In Intl. Symp. on Performance Anal-

ysis of Systems and Software (ISPASS).

[15] Michael LeBeane, Khaled Hamidouche, Brad Benton, Mauricio Bre-

ternitz, Steven K. Reinhardt, and Lizy K. John. 2017. GPU Triggered

Networking for Intra-Kernel Communications. In Intl. Conf. for High

Performance Computing, Networking, Storage and Analysis (SC).

[16] Michael LeBeane, Khaled Hamidouche, Brad Benton, Mauricio Breter-

nitz, Steven K. Reinhardt, and Lizy K. John. 2018. ComP-Net: Command

Processor Networking for Eicient Intra-kernel Communications on

GPUs. In Intl. Conf. on Parallel Architectures and Compilation Tech-

niques (PACT’18).

[17] Weifeng Liu, Ang Li, Jonathan Hogg, Iain S. Duf, and Brian Vinter.

2016. A Synchronization-Free Algorithm for Parallel Sparse Triangular

Solves. In Intl. Conf. on Parallel Processing (Euro-Par).

[18] Weifeng Liu, Ang Li, Jonathan D. Hogg, Iain S. Duf, and Brian Vinter.

2017. Fast Synchronization-Free Algorithms for Parallel Sparse Trian-

gular Solves with Multiple Right-Hand Sides (SpTRSM). In Journal of

Concurrency and Computation: Practice and Experience.

[19] Mellanox. 2017. Mellanox OFED GPUDirect RDMA. htp://www.

mellanox.com/page/products_dyn?product_family=116

[20] Mellanox. 2018. How To Implement PeerDirect Client us-

ing MLNX_OFED. htps://community.mellanox.com/s/article/

howto-implement-peerdirect-client-using-mlnx-ofed

[21] Mellanox. 2018. IniniBand Performance. htp://www.mellanox.com/

page/performance_infiniband

[22] MPI Forum. 2012. MPI: A Message-Passing Interface Standard. Ver. 3.

www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

[23] Maxim Naumov. 2011. Parallel Solution of Sparse Triangular Lin-

ear Systems in the Preconditioned Iterative Methods on the GPU. In

Technical Report NVR-2011-001, Nvidia.

[24] Nvidia. 2017. GPU Applications. htp://www.nvidia.com/object/

gpu-applications-domain.html

[25] Nvidia. 2018. CUDA Toolkit 9.2. htps://developer.nvidia.com/

cuda-toolkit

[26] Nvidia. 2019. Developing a Linux Kernel Module using GPUDirect

RDMA and CUDA APIs for Memory Ordering. htps://docs.nvidia.

com/cuda/gpudirect-rdma/index.html#sync-behavior

[27] Nvidia. 2019. GPUDirect RDMA. htps://docs.nvidia.com/cuda/

gpudirect-rdma/index.html#sync-behavior

[28] Lena Oden and Holger Froning. 2013. GGAS: Global GPU Address

Spaces for Eicient Communication in Heterogeneous Clusters. In Intl.

Conf. on Cluster Computing (CLUSTER).

[29] Lena Oden, Holger Froning, and Franz-Joseph Pfreundt. 2014.

Ininiband-Verbs on GPU: A Case Study of Controlling an Ininiband

Network Device from the GPU. In Intl. Conf. on Parallel Distributed

Processing Symposium Workshops (IPDPSW). 976ś983.

[30] Lena Oden, Benjamin Klenk, and Holger Froning. 2014. Energy-

Eicient Collective Reduce and Allreduce Operations on Distributed

GPUs. In Intl. Symp. on Cluster, Cloud and Grid Computing (CCGrid).

483ś492.

[31] Marc S. Orr, Shuai Che, Bradford M. Beckmann, Mark Oskin, Steven K.

Reinhardt, and David A.Wood. 2017. Gravel: Fine-Grain GPU-Initiated

Network Messages. In Intl. Conf. for High Performance Computing,

Networking, Storage and Analysis (SC).

[32] Linux Man Pages. 2019. Diret Verbs. htp://man7.org/linux/

man-pages/man3/mlx5dv_init_obj.3.htmlS

[33] Sreeram Potluri, Anshuman Goswami, Davide Rossetti, C. J. Newburn,

Manjunath G. Venkata, and Neena Imam. 2017. GPU-Centric Commu-

nication on NVIDIA GPU Clusters with IniniBand: A Case Study with

OpenSHMEM. In Intl. Conf. on High Performance Computing (HiPC).

253ś262.

[34] Sreeram Potluri, Davide Rossetti, Becker Donald, Poole Duncan,

Venkata Manjunath, Hernandez Oscar, Shamis Pavel, Lopez M. Gra-

ham, Baker Mathew, and Poole Wendy. 2015. Exploring OpenSHMEM

Model to Program GPU-based Extreme-Scale Systems. InWorkshop on

OpenSHMEM and related techonlogies.

[35] Davide Rossetti. 2015. GPUDirect Async. htp://on-demand.

gputechconf.com/gtc/2015/presentation/S5412-Davide-Rosseti.pdf

[36] Sandia National Laboratories. 2017. The Portals 4.1 Network Program-

ming Interface. htp://www.cs.sandia.gov/Portals/portals41.pdf

[37] Jef A. Stuart and John D. Owens. 2009. Message Passing on Data-

parallel Architectures. In Intl. Symp. on Parallel Distributed Processing

(IPDPS).

[38] TOP500.org. 2019. Highlights - June 2019. htps://www.top500.org/

lists/2019/06/

347

http://www.infinibandta.org/content/pages.php?pg=technology_download
http://www.infinibandta.org/content/pages.php?pg=technology_download
http://www.mellanox.com/page/products_dyn?product_family=116
http://www.mellanox.com/page/products_dyn?product_family=116
https://community.mellanox.com/s/article/howto-implement-peerdirect-client-using-mlnx-ofed
https://community.mellanox.com/s/article/howto-implement-peerdirect-client-using-mlnx-ofed
http://www.mellanox.com/page/performance_infiniband
http://www.mellanox.com/page/performance_infiniband
www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.nvidia.com/object/gpu-applications-domain.html
http://www.nvidia.com/object/gpu-applications-domain.html
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html#sync-behavior
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html#sync-behavior
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html#sync-behavior
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html#sync-behavior
http://man7.org/linux/man-pages/man3/mlx5dv_init_obj.3.htmlS
http://man7.org/linux/man-pages/man3/mlx5dv_init_obj.3.htmlS
http://on-demand.gputechconf.com/gtc/2015/presentation/S5412-Davide-Rossetti.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5412-Davide-Rossetti.pdf
http://www.cs.sandia.gov/Portals/portals41.pdf
https://www.top500.org/lists/2019/06/
https://www.top500.org/lists/2019/06/

	Abstract
	1 Introduction
	2 Background
	2.1 GPU Compute Architecture
	2.2 RDMA and OpenSHMEM

	3 GIO Programming Model
	4 Intra-Kernel Networking Data Consistency Issues
	4.1 GPU Memory Model and Relevant Hardware Components
	4.2 GPU Memory Model Implications for Intra-Kernel Networking

	5 GIO Architecture
	5.1 CPU-Side Runtime
	5.2 GPU-Side Runtime
	5.3 GIO Network Templating Design

	6 Evaluation
	6.1 Experimental Setup
	6.2 Microbenchmarks
	6.3 Jacobi 2D Stencil
	6.4 Sparse Triangular Solver (SpTS)

	7 Related Work
	8 Conclusion
	References

