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Abstract

With massive amounts of information on the web, cloud

applications are rapidly emerging as one of the main-stream

domains in modern computing, yet very little is known about

their behavior. To our knowledge, this paper presents the first

detailed study of control flow behavior in cloud workloads.

We characterize branch predictability behavior of cloud and

big data benchmarks, and compare against those of widely

known CPU workloads based on profiling and simulation.

Our in-depth branch analysis of workloads present striking

differences in terms of higher prevalence of indirect branches,

larger offsets in branch targets, abundance of multi-target

branches and low BTB hit-rates. We identify performance

bottlenecks involving branch predictability and provide sug-

gestions that can be incorporated in future datacenter oriented

processor designs. We perform Principal Component Analysis

and clustering techniques to understand similarity/dissimilar-

ity between cloud and CPU workloads.

1. Introduction

Datacenter oriented computing has become prominent with

the rise of cloud based services. Everyday, millions of users

across the world rely on web search, social network services,

video streaming and cloud storage services for business and

personal related purposes [6]. The recent interest in cloud com-

puting has spurred the creation and analysis of many cloud

benchmarking suites. Jia et al. [4] use hardware performance

counters to propose and characterize the DCBench suite for big

data benchmarking. Apache Hadoop applications are evalu-

ated using system-level metrics using the HiBench benchmark-

ing suite [3]. Ferdman et al. present CloudSuite [2] and pro-

vide the Simics images used in this paper. BigDataBench [13]

is a recently proposed benchmarking suite that contains the

greatest breadth of all publicly available benchmarks. It was

created as a collaboration project between academia and vari-

ous industry partners. Yahoo released a benchmarking frame-

work and datasets specifically targeted towards the cloud as

part of the YCSB package [1]. YCSB is distributed as a java

application that allows for variable workload and system con-

figurations. Li et al. introduced a framework called CloudCmp

that enables different public cloud providers to be reasonably

compared to each other in a fair and consistent manner [5].

This paper uses a mixture of microarchitecture indepen-

dent and dependent characteristics while most of the prior

research largely employs microarchitecture dependent char-

acteristics. The Principal Component Analysis (PCA) and

clustering techniques used in this paper are similar to tech-

niques used in [9] [10], but to the best of our knowledge, we

are the first to apply these techniques to cloud and big data

workloads.

2. Workload Profiling and Simulation

This work uses profiling and simulation tools to extract

instruction traces in order to analyze control flow behavior.

CloudSuite benchmarks [2] are used as representative cloud

workloads and SPEC CPU2006 integer suite is used for CPU

workloads [11]. We perform our experiments on a cycle-

accurate out-of-order processor simulator that closely models

today’s high performance server. For cycle accurate timing

simulation, we used Flexus [14]. The instruction trace gen-

eration was performed on SIMICS [8]. We ran the SPEC

CPU2006 INT workloads in rate mode [11].

3. Evaluation

Branches are common control flow features that limit per-

formance if incorrect speculation is made. In most SPEC INT

programs, control flow instructions take approximately 20%

of total dynamic instructions [10]. In our study, branches are

defined as stated in SPARCv9 Architecture Manual. Branches

in the SPARC v9 ISA are categorized into three groups: con-

ditional branches, direct branches and indirect branches.

Sophisticated branch predictors have enabled microproces-

sor vendors to achieve high performance and there are several

metrics that can speculate how well branch predictors perform.

Various branch prediction schemes are used to evaluate the ac-

curacy of branch prediction in our workloads. The accuracy of

each branch predictor is measured in terms of mispredictions

per 1K instructions. Figure 1 shows how various branch pre-

dictors perform on each workload [15] [7]. Cloud workloads

have higher misprediction rate than CPU workloads on average

in all predictor schemes. The PAs predictor has a smaller PHT

entries because some are allocated for BHSR entries when we

constraint that all predictors have the same total number of

entries. Therefore, we observe that the misprediction is higher

with PAs predictor, which indicates that the cloud workloads

will suffer from high branch misprediction due to PHT index

aliasin. A gshare predictor is able to reduce the misprediction

by removing some of its aliasing as it randomizes the PHT.

However, it still shows a noticeably higher misprediction rate.

In this new era of cloud computing, there can be future re-

search areas where a branch predictor is designed to consider

these workloads with a very large instruction footprint.

We have now studied different control flow characteristics

of cloud workloads and compared against CPU workloads.

We would like a statistically rigorous method of incorporating

our metrics to cluster the workloads together. Towards this
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Figure 1: Branch Prediction Analysis
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Figure 2: Similarity Dendrogram

end, we employ PCA. Out of all characteristics (PC’s), we

only choose PC’s whose eigenvalues are greater than 1 based

on Kaiser Criterion. Then, we apply PCA and reduce our

dimensionality to 4 PC’s, which covers 93% of variance.

We now use the principal components to cluster workloads

into a set of groups in a hierarchical fashion using a dendro-

gram [10]. This process uses the Euclidean distance between

each workload and clusters workloads that are close to each

other. The dendrogram is presented in Figure 2. Workloads

that are connected together near the leafs exhibit similar con-

trol flow behavior. For example, if we would like to cluster

workloads into a cluster of 4 groups, we draw a vertical line

that such that this line contains 4 intersections. In our figure,

the vertical line at the linkage distance 3 lets us to choose 4

clusters. We see that Data Serving, Data Analytics, Web Serv-

ing, and Web Search are placed next to each other and form

their own cluster at a very small linkage distance. However,

Software Testing requires a very large linkage distance before

it is merged with other clusters, indicating dissimilarity to the

other benchmarks. Overall, these cluster groups show that

cloud workloads exist in a different space with unique control

flow characteristics. Although we have presented different

control flow features independently, the statistical clustering

verifies our results that cloud workloads do have their unique

characteristics.

4. Conclusion

Growing interests in cloud applications have demanded

the development of efficient hardware and software for cloud

computing systems. This paper takes the initiatives in evalu-

ating effectiveness of conventional control flow optimization

techniques in the new domain of cloud computing. In this

paper, the control transfer characteristics of cloud workloads

are compared against traditional CPU workloads. The similar-

ity/dissimilarity study using PCA shows that cloud workloads

fall under a different category in terms of control flow behavior.

We believe that deeper understanding of distinct branch behav-

iors provide useful insights to both software programmers and

hardware vendors in cloud computing environment.
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