
Copyright

by

Michael Wayne LeBeane

2018

The Dissertation Committee for Michael Wayne LeBeane
certifies that this is the approved version of the following dissertation:

Optimizing Communication for Clusters of GPUs

Committee:

Lizy K. John, Supervisor

Steven K. Reinhardt

Mauricio Breternitz Jr.

Mattan Erez

Mohit Tiwari

Optimizing Communication for Clusters of GPUs

by

Michael Wayne LeBeane

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2018

Dedicated to Preeti.

Acknowledgments

First, I would like to thank my advisor, Professor Lizy K. John, for her

guidance and patience throughout my time in graduate school. Professor John

taught me the fundamentals of architecture during my early coursework, and

in my later years taught me about the art of writing papers and communicating

my work to others. She has always been available to discuss research topics

and has spent countless hours reviewing and improving my work.

I would like to thank my PhD committee for their feedback at my

qualifying exam and defense. Their constructive criticism greatly improved

the quality of this dissertation.

I was fortunate enough to meet a number of extraordinarily kind and

brilliant UT graduate students during my time in graduate school. While there

are too many names to mention, I would like to specifically acknowledge my

lab mates from LCA. Jee Ho Ryoo, Reena Panda, Jiajun Wang, Wooseok Lee,

Shuang Song, and Xinnian Zheng have always encouraged me and pushed me

to graduate, even when things got tough.

My friends, colleagues, and mentors at AMD Research were instru-

mental contributors to the work contained in this dissertation. I would like

to thank Khaled Hamidouche and Brad Benton for teaching me more about

high-performance networking runtimes than I ever wanted to know. I would

v

like to thank Brandon Potter, Eric Van Tassell, Sooraj Puthoor, Tony Gutier-

rez, and Brad Beckmann for helping me solve frustrating simulator bugs for

many years now, and for building much of the infrastructure used in this work.

I would like to thank Mauricio Breternitz for his mentor-ship, kindness, and

availability for spurious coffee breaks. Finally, I would especially like to thank

Steve Reinhardt, my unofficial co-advisor, for adopting me while I was intern-

ing at AMD, for encouraging me to stay on and work on this topic for my

PhD, and for patiently reviewing my terrible code.

I would like to thank my friends and colleagues at Intel’s Storage Tech-

nology Group, who gave me my first real exposure to engineering research

which lead me to the decision to pursue my PhD. I would especially like to

thank Annie Foong for being my first real technical mentor and for keeping in

touch with me throughout graduate school.

Most of all, I am forever grateful to my Mom, Dad, and sister Rachel for

putting up with me for all these years, and for continuing to love and support

me. I never would have made it without them.

vi

Optimizing Communication for Clusters of GPUs

Michael Wayne LeBeane, Ph.D.

The University of Texas at Austin, 2018

Supervisor: Lizy K. John

GPUs are frequently used to accelerate data-parallel workloads across

a wide variety of application domains. While GPUs offer a large amount of

computational throughput within a single node, the largest problems require

a cluster of such devices communicating with different compute nodes across

a network. These clusters can range in size from a small handful of machines

constructed from commodity parts, to several thousand machines built from

specialized components.

Despite widespread deployment of GPUs across clusters both big and

small, communication between GPUs in networks of computers remains un-

wieldy. Networks of GPUs are currently programmed in a clunky coprocessor

style, requiring coordination with a host CPU and driver stack to communicate

with other systems. These intra-node bottlenecks for initiating communica-

tion operations are often much greater than the cost of sending data over a

high-performance network.

This dissertation explores new techniques to more tightly integrate

GPUs with network adapters to allow efficient communication between GPUs

vii

across the network. It evaluates both hardware and software changes to NICs

and GPUs to enable end-to-end, user-space communication between networks

of GPUs, avoiding critical path CPU interference.

First, Extended Task Queuing (XTQ) is proposed to provide the ability

to launch remote kernels without intervention of a host CPU at the target.

Inspired by classic work on active messaging, XTQ uses NIC architectural

modifications to support remote kernel launch without the participation of

the remote CPU. Bypassing the remote CPU reduces remote kernel launch

latencies and allows a more decentralized, cluster-wide work dispatch system.

Next, intra-kernel communication is optimized through the Command

Processor Networking (ComP-Net) framework. ComP-Net uses a little-known

feature of modern GPUs: embedded, programmable microprocessors that are

typically referred to as Command Processors (CPs). GPU communication la-

tency is decreased by running the network software stack on the CP instead of

the host CPU. ComP-Net implements a runtime and programming interface

that allows the GPU compute units to take advantage of the unique capabil-

ities of a networking CP. Challenges related to the GPU’s relaxed memory

model and L2 cache thrashing are addressed to reduce the latency of network

communication through the CP.

Finally, GPU Triggered Networking (GPU-TN) is proposed as an alter-

native intra-kernel networking scheme that enables a GPU to directly trigger

network operations from within a GPU kernel without the involvement of any

CPU on the critical path. GPU Triggered Networking implements a NIC hard-

viii

ware mechanism by which the GPU can directly trigger the network adapter

to send messages. In this approach, the host CPU is responsible for creating

the network command packet on behalf of the GPU and registering it with the

NIC. When the GPU is ready to send a message, it “triggers” the NIC using

a memory-mapped store operation. A small amount of additional hardware in

the NIC collects these writes from the GPU and initiates the pending network

operation when a threshold condition has been met. These optimizations allow

for fine-grained remote communication without ending a kernel.

ix

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiv

List of Figures xv

Chapter 1. Introduction 1

1.1 Problem Description . 2

1.2 Contributions . 5

1.3 Thesis Statement . 6

1.4 Organization . 7

Chapter 2. Background and Related Work 8

2.1 RDMA Networks . 8

2.1.1 One-Sided Communication 9

2.2 GPU Technology . 11

2.2.1 Architecture . 12

2.2.2 Programmability . 14

2.2.3 Memory Consistency Model 14

2.2.4 Intra-Node GPU Integration 15

2.2.4.1 User-Level Command Queuing 16

2.2.4.2 Shared Virtual Memory 16

2.2.4.3 Shared-Memory Synchronization 16

2.2.4.4 Intra-Node GPU Networks 17

2.3 Related Work . 17

2.3.1 Inter-Kernel Networking Optimizations 18

2.3.2 Intra-Kernel Networking Optimizations 20

x

2.3.2.1 GPU Host Networking 20

2.3.2.2 GPU Native Networking 21

2.3.3 Active Messaging and Message Passing Machines 22

Chapter 3. Methodology 24

3.1 Simulation Infrastructure . 24

3.1.1 Power Modeling . 27

3.2 Workloads . 28

3.2.1 Reduce and Allreduce 28

3.2.2 Accumulate . 28

3.2.3 Jacobi Stencil . 29

3.2.4 Machine Learning . 30

Chapter 4. Extended Task Queuing: Active Messages for Het-
erogeneous Systems 32

4.1 Architecture . 37

4.1.1 Message Format . 37

4.1.2 Remote Task Dispatch 38

4.1.3 Rewrite Semantics . 41

4.1.3.1 Lookup Tables 43

4.1.3.2 Rewrite Procedure 44

4.2 Programming Model . 45

4.2.1 XtqPut Function . 46

4.2.2 Lookup Table Registration 46

4.2.3 Example Program . 47

4.3 Evaluation . 50

4.3.1 Experimental Setup . 50

4.3.2 Latency Analysis . 52

4.3.3 MPI Integration . 53

4.3.3.1 One-Sided Accumulates 54

4.3.3.2 Reduce and Allreduce 56

4.3.3.3 MPI Benchmarks 56

4.3.4 Machine Learning . 59

4.4 Conclusion . 60

xi

Chapter 5. ComP-Net: Command Processor Networking for
Efficient Intra-kernel Communications on GPUs 61

5.1 Motivating ComP-Net . 64

5.1.1 High Latencies . 64

5.1.2 Poor Scalability . 67

5.1.3 The Case for ComP-Net 67

5.2 Programming Model . 68

5.3 Architecture . 72

5.3.1 GPU/CP Communication 72

5.3.2 CP Atomic Operations 75

5.3.3 Controlling Cache Thrashing 76

5.4 Evaluation . 79

5.4.1 Experimental Setup . 79

5.4.2 Microbenchmarks . 82

5.4.3 Jacobi 2D Stencil . 84

5.4.4 Allreduce . 86

5.4.5 Machine Learning . 88

5.5 Conclusion . 89

Chapter 6. GPU Triggered Networking for Intra-Kernel Com-
munications 90

6.1 Architecture . 93

6.1.1 Overview . 93

6.1.2 Relaxed Synchronization Model 96

6.1.3 NIC Hardware Extensions 97

6.1.4 Dynamic Communication 99

6.2 Programming Model . 100

6.2.1 Host API . 101

6.2.2 Kernel API . 103

6.2.2.1 Work-Item/Work-Group-Level 103

6.2.2.2 Kernel-Level . 103

6.2.2.3 Mixed-Granularity 104

6.2.2.4 Local Completion 105

xii

6.2.2.5 Target-Side Completion 105

6.2.2.6 Scoped Memory Model Interactions 106

6.3 Evaluation . 107

6.3.1 Experimental Setup . 107

6.3.2 Latency Analysis . 110

6.3.3 Jacobi 2D Stencil . 112

6.3.4 Allreduce . 114

6.3.5 Machine Learning . 116

6.4 Conclusion . 117

Chapter 7. Conclusion 118

7.1 Summary . 118

7.2 Qualitative Comparison of Proposed Techniques 120

7.3 Future Work . 122

7.3.1 Application Studies . 123

7.3.2 Leveraging Emerging NIC Technologies for GPUs 125

Bibliography 127

xiii

List of Tables

2.1 AMD to Nvidia translator. 12

2.2 Taxonomy and comparison of prior art in GPU networking. . . 19

3.1 Microsoft Cognitive Toolkit networking behavior. 30

4.1 XTQ simulation configuration. 50

5.1 ComP-Net simulation configuration. 79

6.1 GPU-TN simulation configuration. 107

7.1 Comparison of prior art and proposed GPU networking tech-
niques. 120

xiv

List of Figures

1.1 Control plane for GPU-to-GPU, inter-node communication (IOC
stands for Input/Output Controller). 2

1.2 Study of kernel launch latencies on modern GPUs. 3

1.3 Allreduce algorithm on three nodes organized as a ring. 4

2.1 GPU architecture described using AMD terminology based on
the Graphics Core Next (GCN) architecture. 13

2.2 Intra-node accelerator integration in HSA. 15

2.3 Overview of the control flow of different networking strategies
on the GPU. 18

3.1 Overview of a single node of the simulation infrastructure. . . 26

3.2 Stencil pattern and halo exchange example. 29

4.1 Remote task enqueue control path on different heterogeneous,
distributed-memory systems. 34

4.2 XTQ message format. 38

4.3 Target side steps in XtqPut operation. 39

4.4 Target-side XTQ rewrite semantics. 44

4.5 Pseudocode for XtqPut operation. 48

4.6 Time breakdown of remote GPU kernel launch. 53

4.7 NWChem tce ozone Accumulate statistics. 55

4.8 Acceleration of MPI Accumulate, Reduce, and Allreduce oper-
ations over XTQ. 57

4.9 XTQ performance on Microsoft Cognitive Toolkit workloads
across 8 GPU-enabled nodes. 59

5.1 Comparison of ComP-Net to traditional intra-kernel networking
schemes. 62

5.2 Latency and scalability issues with intra-kernel networking via
host forwarding . 65

xv

5.3 ComP-Net ping/pong example on host and device. 70

5.4 Illustration of work-groups and CP network service threads com-
municating using ComP-Net. 73

5.5 L2 hit rate for CP-generated accesses under different GPU load
conditions. 77

5.6 Microbenchmarks of ComP-Net vs other intra-kernel network-
ing baselines. 83

5.7 Performance of different networking techniques on various sten-
cil sizes. 85

5.8 Performance and energy of different networking techniques on
Allreduce of different input sizes. 87

5.9 Projected speedups on Microsoft Cognitive Toolkit workloads
with intra-kernel Allreduce on ComP-Net. 88

6.1 Overview of a GPU triggered operation in GPU-TN. 94

6.2 Tag matching behavior of trigger entries. 98

6.3 Pseudocode illustrating the responsibilities of the host CPU in
GPU-TN. 100

6.4 GPU kernel pseudocode illustrating how to trigger network trans-
fers through GPU-TN for different granularities. 102

6.5 GPU-TN vs HDN vs GDS latency decomposition from a small
microbenchmark. 111

6.6 Performance on a single iteration of a 2D Jacobi Relaxation
computation over different NxN grid sizes. 113

6.7 GPU-TN strong scaling performance evaluation on an 8MB
MPI Allreduce collective operation. 115

6.8 GPU-TN performance across six deep learning workloads on a
cluster of 8 nodes. 116

xvi

Chapter 1

Introduction

With the impending end of Moore’s Law and Dennard scaling [28], the

computing industry has turned to accelerators to continue pushing the per-

formance and power trends of the last 50 years. Chief among the currently

proposed accelerator architectures are GPUs. While traditionally used solely

for the acceleration of graphics workloads, GPUs have been re-purposed to

accelerate a variety of data-parallel applications from domains such as com-

putational finance, oil and gas, data science, climate modeling, and machine

learning [74].

Individually, GPUs can provide up to 15.7 teraflops of performance [76],

and the biggest, most expensive single node machines with many GPUs can

provide upwards of 240 teraflops [75]. However, to solve the largest and

most difficult problems, GPU-enabled nodes must be connected over a high-

performance computer network. Indeed, there are many supercomputers and

data centers that employ large networks of GPUs. For example, 98 of the top

500 fastest supercomputers and 30 of the top 100 machines on the Green 500

list utilize GPUs to reach unparalleled performance per watt on data-parallel

workloads [97].

1

Initiator Target

CPU
CacheMemory

NIC Memory

Network

IOCCPU
Cache Memory

NICMemory

GPUIOC GPU

Memory Memory

Figure 1.1: Control plane for GPU-to-GPU, inter-node communication (IOC
stands for Input/Output Controller).

1.1 Problem Description

Despite widespread deployment across clusters both large and small,

networks of GPUs are currently programmed in a cumbersome coprocessor

style. In order for a GPU to transfer a piece of data from its local memory

to the memory of a remote GPU, it must go through an exorbitant number of

hops and control flow transfers involving most of the components on a node.

As a small example, in Figure 1.1, a GPU on the initiator node wishes to

transfer data to a GPU on a target node. In a conventional heterogeneous

system, the initiator GPU has to end the currently executing kernel, notify

the driver on the host CPU, and call into a networking stack which uses a

high-performance Network Interface Controllers (NICs) sitting on an I/O bus

to transfer the data to the target. At the target, a reverse sequence of steps

will occur, and a new kernel has to be launched, as stale copies of the data

can exist in non-coherent caches which are only flushed at kernel boundaries.

While emerging technologies such as Nvidia’s GPUDirect RDMA [64] and

AMD’s ROCn RDMA [9] enable NICs to transfer data directly to a GPU’s

on-board memory, the control plane still involves the tortured route described

2

0

4

8

12

16

20

1 4 16 64 256

La
u

n
ch

 L
a

te
n

cy
 (

µ
s)

Kernel Commands Queued

AMD Radeon R9 FURY

AMD A10-7850K R7 (APU)

Nvidia 980 GTX

Figure 1.2: Study of kernel launch latencies on modern GPUs.

previously.

These overheads can be significant on modern hardware. To provide

some context, Figure 1.2 explores the most expensive part of the above trans-

fer: the overhead of starting and stopping the kernel and communicating this

information with the host CPU. This experiment evaluates launch/completion

latencies on GPUs from multiple vendors and different form factors. In this

experiment, the GPUs’ hardware scheduling logic is presented with a variable

length sequence of empty kernels. Depending on the size of the kernel stream

presented to the scheduler and the details of the target hardware, the launch

latencies can vary from 3µs-20µs. Recall that the simple example discussed

previously involved a kernel launch overhead through the CPU on both the

initiator and the target.

Even in the best case, the large dispatch overheads discourage fine-

grained or frequent messaging using kernel boundary solutions, and require

3

0

1 2

25

5311

0

1 2

25

5311

11

2553

0

1 2

25

11

64

53

78

25

36

11 53

0

1 2

25

5311

64

3678

36

64 78

0

1 2

25

64

89

78

89

36

89

11 53

Initial Communication Compute Compute

Time

Nodes/

GPUs

Buffers

Communication

Figure 1.3: Allreduce algorithm on three nodes organized as a ring.

that the network operation be large enough to amortize the cost of splitting a

kernel into pre-network and post-network pieces. The overheads also effectively

negate the efforts of network interconnect providers, who have successfully

reduced end-to-end wire latencies to 0.6µs at the time of this writing [66].

Kernel boundary networking is particularly problematic in strong scal-

ing scenarios, where the addition of more nodes decreases the work per node

and increases the number of ever smaller messages. Consider the case of the

simple Allreduce operation illustrated in Figure 1.3, which is an important

primitive in many distributed, GPU-accelerated machine learning applica-

tions [2]. In Allreduce, each GPU requires a piecewise combination of the

vector present on every other GPU. Data is copied from one node to the next

during the communication step, which is followed by a user-specified binary

operation combining the data received from the network with a local buffer

4

in the computation step. At the end, every node has the final result of the

reduction. As more GPUs are added to the collective operation with a fixed

size input, the amount of work assigned to each GPU decreases and the num-

ber of rounds of communication increases. Eventually, the large overheads of

entering and exiting a kernel between the computation and communication

phases will dominate the runtime, even when there is enough parallelism to

otherwise make GPUs attractive for accelerating the application.

1.2 Contributions

This dissertation explores new techniques to more tightly integrate

GPUs with network adapters to allow efficient communication between GPUs

across the network. It evaluates both hardware and software changes to NICs

and GPUs to enable end-to-end, user-space communication between networks

of GPUs, avoiding critical path CPU interference. The primary contributions

can be broken down into the following three topics.

1. Extended Task Queuing (XTQ): XTQ [59] defines an active mes-

saging system enabling direct NIC-to-accelerator kernel dispatch. This

scheme enables tightly integrated accelerators to efficiently and directly

communicate with each other through a customized NIC. The target-

side NIC participates in a tightly coupled queuing model and can di-

rectly schedule work to the accelerator, completely eliminating the CPU

communication path.

5

2. Command Processor Networking (ComP-Net): To accelerate net-

working, ComP-Net [57] uses a little-known feature of modern GPUs:

embedded, programmable microprocessors that are typically referred to

as Command Processors (CPs). GPU communication latency is de-

creased by running the network software stack on the CP instead of

the host CPU. ComP-Net implements a runtime and programming in-

terface that allows the GPU compute units to take advantage of the

unique capabilities of a networking CP. Challenges related to the GPU’s

relaxed memory model and L2 cache thrashing are addressed to reduce

the latency of network communication.

3. GPU Triggered Networking (GPU-TN): GPU-TN [58] defines a

high-performance mechanism by which the GPU can directly trigger a

network operation on a NIC. In this approach, the host CPU is responsi-

ble for creating the network command packet on behalf of the GPU and

registering it with the NIC. When the GPU is ready to send a message, it

simply “triggers” the NIC using a memory-mapped, posted write opera-

tion. GPU-TN is implemented using only a small amount of additional

complexity on a high-performance network adapter.

1.3 Thesis Statement

GPU networking can be improved by both software and hardware en-

hancements that enable GPUs to more directly interface with the network

control plane.

6

1.4 Organization

The organization of this dissertation is as follows. Chapter 2 describes

networking and GPU background information, along with the prior research

work in the area of GPU networking. Chapter 3 describes the simulators,

methodologies, and workloads used to produce data throughout the disserta-

tion. Chapter 4 describes the Extended Task Queuing mechanism to efficiently

launch kernels on remote GPUs. Chapter 5 describes how a GPU’s command

processor can be leveraged to increase GPU networking performance. Chap-

ter 6 explores a mechanism for the host to pre-register network operations on

a NIC that can be triggered by a GPU when the data is ready to be sent.

Finally, Chapter 7 concludes the dissertation and suggests future work in the

area.

7

Chapter 2

Background and Related Work

This chapter discusses relevant background information on high per-

formance networks and GPU architecture. It also includes a summary and

taxonomy of the prior art for GPU networking.

2.1 RDMA Networks

Modern high-performance clusters employ Remote Direct Memory Ac-

cess (RDMA) adapters for lightweight and efficient inter-node data movement.

RDMA can mean many different things depending on the context. For the pur-

poses of this dissertation, the term RDMA refers to the direct transfer of data

from an initiator node’s memory to a target node’s memory over a network.

Once the communication has been scheduled at the initiator, no more effort

from the CPU host is required to move the data until the operation completes.

In many ways, RDMA extends the semantics of an intra-node DMA operation

across the network.

Data movement from one node to another is accomplished using intelli-

gent hardware built into NICs. While these technologies were previously only

available in the highest-performance (and cost) systems, high-speed RDMA

8

fabrics can now be found on commodity systems. Technologies such as In-

finiBand [47], iWARP [48], RDMA over Converged Ethernet (RoCE) [46],

OmniPath [16], and Portals 4 [89] all offer high-quality RDMA solutions. Cur-

rent technologies can reliably provide networking latencies as low as 0.6µs and

throughput as high as 200Gbps [66].

The most important feature of high-performance networking for the

purpose of this dissertation is the interface between the network hardware

and the lowest-level system software. All high-performance NICs expose at

least two types of queues to the system software. The first type of queue

is for submitting commands to the NIC (e.g., send a buffer to node x from

address y). System software produces command packets that fully encapsulate

the behavior of the transfer, which is evaluated by a state machine or more

traditional computational pipeline on the NIC. The second type of queue is

used to deliver notifications from the NIC to the host CPU (e.g., data received

from node x at address y). This queue is populated by the NIC itself and

monitored by a low-level networking runtime or driver.

2.1.1 One-Sided Communication

From a programming model perspective, high performance network-

ing is split into two main categories: one-sided and two-sided communication.

Two-sided communication is the style typically favored by traditional message

passing libraries. In two-sided communication, the sender and receiver must

explicitly participate in the network communication by using paired Send and

9

Receive calls in the application. While this is easy to conceptualize, there

are a number of limitations that can complicate network runtime implemen-

tations and degrade performance. Each Send and Receive typically implies a

complicated set of synchronization operations between the sender and receiver

before data is ever sent. The sender and the receiver must both coordinate

buffer space and perform tag matching so that individual messages are routed

to the correct buffer. Furthermore, it is common for paired Send and Receive

calls to be temporally separated in the application, resulting in intermediate

buffering at the receiver or a delay in the sender initiating a data transfer.

One-sided communication is an alternative to the paired communica-

tion model that seeks to overcome many of the previously described limitations

by taking advantage of the capabilities of modern RDMA NICs. In one-sided

communication, the initiator performs Get and Put operations that corre-

spond very closely to the semantics of local Load and Store operations in a

system operating under a relaxed memory consistency model. The target CPU

does not need to explicitly participate, as regions of memory on the target are

directly exposed to the initiator. Data transfer is allowed to proceed as soon

as the network operation is encountered in the application with no interme-

diate buffering. One-sided communication also separates out synchronization

from data movement, allowing a large number of network operations to com-

plete before the application programmer requires any sort of synchronization.

This abstraction allows for a much simpler software runtime and can increase

performance for irregular workloads.

10

One-sided communications semantics serve as the cornerstone of the

Partitioned Global Address Space (PGAS) style of parallel programming,

where the global memory address space is logically partitioned and a par-

tition is assigned to every process. There is a large number of languages and

runtimes supporting a PGAS programming model, such as OpenSHMEM [12],

GASNet [17], UPC [24], UPC++ [103], Chapel [22], GPI [34], X10 [19], and

newer versions of the Message Passing Interface (MPI) [68]. Much of the work

in this dissertation is heavily influenced by the semantics of PGAS languages

and one-sided communication.

2.2 GPU Technology

While GPUs were originally designed to accelerate graphics workloads,

researchers have been trying to use the hardware for non-graphics purposes

dating back decades [43]. However, it wasn’t until the introduction of user

programmable vertex engines [62] that GPGPUs (General-purpose computing

on graphics processing units) became mainstream and spurred a vast body

of research [83]. The GPGPU paradigm uses the computational throughput

and memory bandwidth of GPUs to greatly accelerate certain classes of data-

parallel workloads. This section will describe the major components of GPU

hardware, software, and supporting infrastructure that are relevant to this

dissertation.

Unfortunately, there is no standard terminology when describing GPU

architecture. The two major GPU vendors (AMD and Nvidia) use slightly

11

Table 2.1: AMD to Nvidia translator.

Description Nvidia AMD

Single stream of execution
and control flow

Thread Work-item

Concurrently executing
threads that share a vector
ALU

Warp (32 Threads) Wavefront (64
Work-items)

On-chip scratchpad
memory

Shared Memory Local Data Share
(LDS)

Logical thread bundle for
barrier synchronization and
shared scratchpad memory

Thread Block Work-group

Collection of all threads
executing in a single kernel

Grid NDRange

Vector ALU for processing
wavefronts

CUDA Core SIMD Unit

Collection of SIMD Units
sharing a private L1 cache
and wavefront scheduler

Streaming
Multiprocessor (SM)

Compute Unit (CU)

different verbiage to describe very similar concepts. This dissertation will use

AMD’s Graphics Core Next (GCN) architecture [7] and terminology through-

out. However, all mentioned technologies have an equivalent component on

Nvidia hardware. Table 2.1 provides a brief translation from AMD to Nvidia

terminology for the most common concepts.

2.2.1 Architecture

Figure 2.1 illustrates the relevant components of a GPU. GPUs are

comprised of a number of Compute Units (CUs), each of which are comprised

of a collection of Single Instruction, Multiple Data (SIMD) units. Each CU

12

Local Data Share

L2 Cache

L1 Cache

CPU Core

GPU Memory

Compute Unit Command

Processor

L1 Cache

SIMD SIMD SIMD SIMD

GPU

Figure 2.1: GPU architecture described using AMD terminology based on the
Graphics Core Next (GCN) architecture.

is connected to a private L1 cache and shared L2 cache, which are not coher-

ent and are maintained by explicit cache management instructions. Groups of

work-items are dispatched on the compute units in bundles known as wave-

fronts. These wavefronts are further bundled into work-groups. Work-groups

execute on the same CU and can therefore make use of per-CU scratchpad

memory called the Local Data Share (LDS). Good performance on a GPU is

achieved by providing a large amount of work and minimizing the amount of

control-flow and memory divergence..

GPUs also contain a components known as the Command Processors

(CPs). The primary responsibility of the CPs is to manage the scheduling,

launch, and tear-down of GPU kernels by serving as an intermediary between

the host CPU and the GPU’s work-group scheduler. Each CP contains a

private L1 cache that is connected to the same shared L2 cache as the CUs.

13

2.2.2 Programmability

GPUs are programmed by writing Single Instruction, Multiple Thread

(SIMT) functions called kernels. Each kernel is written from the perspective

of a single work-item. The number of work-items comprising a kernel and the

number of work-items in a work-group are dispatch parameters controlled by

the application programmer, but are subject to hardware limitations. Kernels

are dispatched on the GPU using a vendor-provided runtime that may be

directly visible to the application or hidden under a more general-purpose

runtime. Kernels and launch parameters are communicated with the GPU

using in-memory command queues, which are processed by the GPU’s CPs.

2.2.3 Memory Consistency Model

The GPU operates using a weak, partially software-managed memory

consistency model [44]. To share data between different threads on a GPU or

other device, the programmer needs to use scoped synchronization operations.

A scope defines the level of visibility that a synchronization operation applies

to (e.g., local, device, and system). In this dissertation, it is assumed that a

synchronization primitive can either be a release operation, which forces all

previous memory operations from the current thread to be visible to the re-

quested scope, or an acquire operation, which forces all memory operations be-

low the acquire to see the most recent data from other threads at the requested

scope. Essentially, these primitives map to cache maintenance operations and

memory fences in the GPU hardware.

14

CPU
(Producer)

Tightly Coupled Devices

Virtual

Memory

Command

Queue

Accelerator
(Consumer)

Command

Packet

(a) HSA tasking model.

MMU

CPU

Tightly Coupled Devices

Physical Memory

AcceleratorOS

Driver
IOMMU

(b) Shared virtual memory.

Figure 2.2: Intra-node accelerator integration in HSA.

2.2.4 Intra-Node GPU Integration

As this dissertation focuses largely on system-level interactions between

various devices on a node, it is important to briefly discuss how GPUs are

integrated onto a compute node. Modern system designs are increasingly pro-

viding tighter coupling between CPUs, GPUs, and other accelerators. For

the remainder of the paper, we will use the Heterogeneous System Architec-

ture (HSA) [45] as the prototypical example of how GPUs are integrated with

the rest of the system architecture. HSA is an open industry standard from

the HSA Foundation, a consortium formed by AMD, ARM, Imagination Tech-

nologies, MediaTek, Texas Instruments, Samsung Electronics, Qualcomm, and

others with the objective of helping system designers integrate different kinds

of computing elements (e.g., CPUs and GPUs) to enable efficient data shar-

ing and work dispatch. Some important features of the HSA specification are

illustrated in Figure 2.2 and are described in the following paragraphs.

15

2.2.4.1 User-Level Command Queuing

In HSA, applications allocate accelerator task queues in user memory.

Devices fetch and execute tasks directly out of these queues, thereby elimi-

nating OS kernel transitions and device-driver overheads on common paths.

Figure 2.2a illustrates HSA user-level command queuing. User-mode queues

are arranged as circular buffers, with the read and write pointers implemented

as monotonically increasing indices. The queue entry format is defined by

HSA’s Architected Queuing Language (AQL). AQL packets contain all the

information needed to launch and synchronize a GPU kernel or CPU function.

2.2.4.2 Shared Virtual Memory

HSA requires that devices access memory using the same virtual ad-

dresses seen by the application program. This feature is necessary to allow

users to pass pointers directly to devices through the HSA task queues with-

out device driver intervention or validation. Devices must also be capable of

initiating page faults to avoid the need to pin device-accessible pages in system

memory. Shared translations can be provided to devices by an Input-Output

Memory Management Unit (IOMMU) that references the same page tables as

the host CPUs [5, 13], as shown in Figure 2.2b.

2.2.4.3 Shared-Memory Synchronization

HSA uses memory-based signal objects for synchronization. Processes

indicate to a device that work has been placed in its command queue using

16

a doorbell signal associated with the queue. The doorbell signal can map to

a memory-mapped device range (e.g., for a firmware- or hardware-dispatched

device such as a GPU), or to a shared-memory location (on which a software-

dispatched device such as a CPU can poll). Devices or threads can also wait

on tasks to finish using these in-memory completion signals.

2.2.4.4 Intra-Node GPU Networks

Unlike GPU communication across nodes, communication between mul-

tiple GPUs residing on the same node have been highly optimized by GPU

vendors. Nvidia’s version of this technology is known as NVLink Fabric [77].

NVLink allows for low latency, high bandwidth access from one GPU to an-

other using loads and stores from within a kernel, as well as supporting more

traditional host-initiated DMA transfers. Much of the work in this disserta-

tion is towards bringing the performance and ease of use of technologies like

NVLink across more traditional multi-node networks.

2.3 Related Work

This dissertation builds upon a number of closely related technologies.

This section describes the state of the art in industry today and some academic

research in the area of GPU networking. A taxonomy of different networking

approaches is also described that will be used to refer to groups of related

works collectively throughout the dissertation. Figure 2.3 provides a visual

representation of each style of GPU networking discussed in this section, and

17

Kernel

WaitLaunchSendWaitLaunch

Host-Driven Networking Put

CPU

GPU

NIC

Done

Time

Launch

Kernel

GPU Native Networking Put

CPU

GPU

NIC

Done

Send

WaitSendWaitLaunch

GPU Host Networking Put

CPU

GPU

NIC

Done

Send

Kernel Kernel

Send Launch

GPUDirect Async (GDS) Put

CPU

GPU

NIC

Done

Kernel Kernel

Intra-Kernel Networking

Kernel Boundary Networking

Figure 2.3: Overview of the control flow of different networking strategies on
the GPU.

Table 2.2 provides a breakdown of the characteristics and overheads common

to the different approaches to GPU networking.

2.3.1 Inter-Kernel Networking Optimizations

Most early GPU networking research and all currently available indus-

try work involve optimizing GPU communication at kernel boundaries. This

style of kernel-boundary GPU communication will collectively be referred to as

18

Table 2.2: Taxonomy and comparison of prior art in GPU networking.

Networking
Strategy

Kernel
Boundary

GPU
Triggered

GPU Overhead CPU Overhead

Host-Driven Networking
[64, 29, 93]

Yes No - Network Stack

GPU Native Networking
[78, 79, 52, 53, 25]

No Yes Network Stack -

GPU Host Networking
[51, 94, 36, 67, 82]

No No
CPU/GPU Queue

Management
Service Threads,
Network Stack

GPU Direct
Async (GDS) [87]

Yes Yes Network Trigger
Partial Network

Stack

Host-Driven Networking (HDN) in this dissertation, since the host directs

the networking operations at kernel boundaries.

In academia, Zippy [29] and Compute Unified Device and Systems Ar-

chitecture (CUDASA) [93] were some of the earliest works in this area. Both

expose GPU communication using a PGAS programming style, where com-

munication is performed at kernel boundaries on the CPU itself using custom

runtime extensions wrapped around MPI.

Industry has proposed two optimizations to accelerate GPU networking

at kernel boundaries. The first technology is a collaboration between Mellanox

and AMD/Nvidia, which enables direct peer-to-peer data copy of buffers on a

discrete GPU’s memory to a NIC without the need for bounce buffers through

host memory. On Nvidia hardware, this technology is known as GPUDirect

RDMA [64], and on AMD hardware, it is known as ROCn RDMA [9]. Network

runtimes such as CUDA-aware OpenSHMEM [37] take advantage of GPUDi-

19

rect RDMA features to optimize data movement for one-sided communications.

Recently, Nvidia has proposed an update to their baseline GPUDirect

technology, known as GPUDirect Async (GDS) [87]. GDS goes so far as

to allow the GPU to initiate pre-registered network messages by ringing a

doorbell on the NIC. In the GDS model, the CPU posts a network operation

and interleaves network initiation between kernel invocations inside of Nvidia

CUDA [73] streams. The CP evaluates the stream and rings a doorbell on the

NIC when a kernel has completed.

2.3.2 Intra-Kernel Networking Optimizations

Recently, a number of academic research efforts have attempted to make

networking within a GPU kernel possible. Current intra-kernel networking

mechanisms can largely be broken down into two classes depending on their

design. A brief overview of each type is presented here.

2.3.2.1 GPU Host Networking

The first intra-kernel networking approach, which will be referred to

as GPU Host Networking , defines a lightweight, GPU-optimized interface

between the GPU and the CPU. The GPU writes the payload to a bounce

buffer and hands it off to the CPU. The CPU performs the heavy lifting of

creating a network-compatible command packet pointing to the provided buffer

before handing it off to the NIC.

A number of research projects implement intra-kernel networking us-

20

ing this technique. FLAT [67] allows for the automatic generation of CPU

MPI codes from GPU kernels using custom compiler extensions. Distributed

Computing for GPU Networks (DCGN) [94] exposes an MPI-like interface

for GPU kernels to pass messages to GPUs on remote nodes. CPU helper

threads perform communication on behalf of the GPU by tunneling requests

through standard MPI. GPUNet [51] provides a socket-based abstraction for

the GPU, and also uses CPU helper threads to perform the actual communi-

cation. The dCUDA [36] model implements a GPU networking programming

model that attempts to hide long latency GPU network events across the clus-

ter. Gravel [82] optimizes irregular GPU messaging applications by employing

host-side coalescing of network operations. Gravel is unique among these works

in that it focuses solely on APUs (SoCs with both GPUs and CPUs on the

same die).

2.3.2.2 GPU Native Networking

The second intra-kernel networking approach, which will be referred to

as GPU Native Networking , constructs a networking stack on the GPU

itself. GPU scratchpad memory and persistent kernels (i.e., kernels that last

for the entire duration of the program) are used to hold network and con-

nection state, allowing the GPU to communicate with the NIC without any

intervention from the CPU.

Similar to GPU Host Networking, there has been some exploration of

this technique in academia. GPU Global Address Space (GGAS) [78] ex-

21

plores adding custom hardware in the GPU to support a cluster wide global

address space, where GPUs can communicate with each other through sim-

ple loads and stores. Oden et al. [79] explore implementing InfiniBand en-

tirely on a GPU runtime, with mixed results. However, additional work by

the same research group illustrates much more favorable performance [52, 53].

GPUrdma [25] also implements InfiniBand directly on the GPU, although lim-

itations of current GPU hardware can cause correctness problems under high

load. NVSHMEM [85] provides an OpenSHMEM-like interface to perform

one-sided communication from within a kernel, but is currently limited to a

single node. Agostini et al. [3] describes several implementations of GPUDi-

rect Async, one of which of offers similar intra-kernel networking semantics to

GPUrdma.

2.3.3 Active Messaging and Message Passing Machines

One technique used in this dissertation to improve the performance of

GPU networking is based on the concept of active messages. The seminal Ac-

tive Messages work [27] embeds computation in network messages by directly

invoking a user message handler on the target. Several machines proposed in

the ’90s coupled light-weight tasks with explicit message passing directly in

hardware, including the J-Machine [30], M-Machine [71], Star-T Voyager [10];

or some combination of messaging passing and shared memory such as MIT

Alewife [1], Typhoon [86], and FLASH [38]. More recently, Besta and Hoe-

fler [14] modify the IOMMU to invoke active-message-like handlers as a side

22

effect of RDMA Put and Get operations.

A number of low-level libraries have since implemented active mes-

saging semantics. Willcock et al. [101] developed AM++, which extends low

level active messaging primitives with a type-safe, generic programming model.

IBM’s Deep Computing Messaging Framework (DCMF) [54] and their Low-

level Application Programing Interface (LAPI) [92] provide active messaging

support for the application programmer on IBM systems. Perhaps the most

well-known runtime library to implement active messaging support is GAS-

Net [17]. GASNet is a low-level, portable runtime that is used to implement

many PGAS languages. The lowest level of the GASNET core API is designed

largely around optimized active message routines.

23

Chapter 3

Methodology

This dissertation relies on cycle-level simulation and power modeling

along with some targeted studies and projections from real hardware. This

chapter provides an outline of the infrastructure, methodology, and workloads

that are used to evaluate the usefulness of the proposed GPU networking

optimizations.

3.1 Simulation Infrastructure

The open-source gem5 simulator [15] is used for all simulation results

reported in this dissertation. The gem5 simulator is a publicly available cycle-

level simulation infrastructure commonly used for computer architecture re-

search. It comes with a number of models for commonly used components,

such as an out-of-order CPU model and memory model.

In addition to the baseline simulator, the AMD GPU compute model [6]

is used as the baseline GPU simulation environment. The AMD baseline GPU

model runs an intermediate language called Heterogeneous System Architec-

ture Intermediate Language, or HSAIL. However, recent work has shown that

GPU simulators should run their native ISA [35], not an intermediate language,

24

to replicate the performance of real GPUs. Therefore, the infrastructure used

in this work was enhanced to support direct execution of AMD’s GCN3 [7]

ISA.

The infrastructure simulates multi-node configurations with a simple

switch and wire delay model in a star topology. The Portals 4 network pro-

gramming API is used as the low-level network interface for all simulation

results. Portals 4 is a connectionless low-level network API designed to sup-

port MPI and various partitioned global address space (PGAS) languages. It

is agnostic to the underlying physical layer and exposes both flow-control and

RDMA data transfer to higher-level applications and libraries.

One unique capability of Portals 4 is the ability for the NIC to delay the

processing of a network command until a certain trigger condition is met. This

mechanism, known as triggered operations, was designed primarily as a means

of accelerating collective operations [98]. Using triggered operations, it is

possible for low-level networking runtime to provide a network command to the

NIC which is only executed when a certain message or messages are received

at the target. Triggered semantics are used in one part of this dissertation to

improve the performance of GPU networking.

Figure 3.1 shows the overall infrastructure, which models an APU-style

system. The CPU-side has a traditional 3-level cache hierarchy with a mostly-

exclusive policy in the L3. On the GPU-side, each CU shares an instruction

cache (I-cache) and a scalar cache (K-cache) with four other CUs and has a

private data cache (D-cache) for vector accesses. The GPU’s L1 caches are

25

Directory
Memory

Controller
Memory

GPU CPU
Core

L2

…

Core

L2

Core

L2

L3

CU

L1D

CU

L1D

CU

L1D

CU

L1D

L1I

L2

…

NIC
NIC Processors

DMA Engines

L1I

CP

Core

Network

L1K

CU

L1D

CU

L1D

CU

L1D

CU

L1D

L1I

L1K

L1D

L1D L1I L1D L1I L1D L1I

Figure 3.1: Overview of a single node of the simulation infrastructure.

not automatically coherent through hardware; they are managed by flush and

invalidate instructions in the GPU ISA. Both the L1 data cache and the SQC

are hooked up to a shared L2. In the APU configuration, the GPU’s L2

cache uses a write-through policy and receives probes from a system directory,

which keeps the L2 cache coherent with other caches in the system. The GPU

module also contains a number of CPs with private L1 data and instruction

caches connected to the GPU’s L2. Both the GPU Last Level Cache (LLC),

CPU LLC and NIC are connected to a coherent system directory.

Some experiments in this dissertation describe a discrete GPU (dGPU)

baseline. For these experiments, the model is altered to statically separate

the memory pool into discrete GPU memory and CPU memory with separate

memory controllers. When a device tries to access memory that is not local to

it (i.e., CPU accesses dGPU memory or dGPU accesses system memory), the

26

simulator uses a simple LogP [23] based model to force accesses to experience

a latency, bandwidth, and message rate in accordance with PCIe gen4 x16

latencies and bandwidths. None of the lower-level characteristics of the PCIe

transaction or physical layer are modeled, however, similar LogP-based ana-

lytical models for networks have been shown to be quite accurate [42]. Also,

in the dGPU configuration, the GPU’s L2 cache no longer writes-through or

responds to probes from the system directory. Therefore, the GPU’s L2 cache

is kept coherent using GPU ISA instructions, similarly to the L1 caches.

While the previous description serves as a baseline for all simulation

results, each chapter will employ the simulation environment in a slightly

different manner. The precise details and configurations for all the systems

under test will be presented before the results are discussed.

3.1.1 Power Modeling

CPU power modeling is performed using the McPAT [60] power mod-

eling tool. McPAT is a multi-core power estimation tool that uses models de-

rived from CACTI [102] to estimate the power consumption of various SRAM

blocks and accompanying control logic in the core and caches. Results from

gem5 simulations are fed into McPAT to obtain energy and power estimates.

For this dissertation, McPAT is configured to operate at the 22nm technology

node. No GPU power numbers are collected or reported.

27

3.2 Workloads

The techniques presented in this dissertation are evaluated across a

number of GPU microbenchmarks and workloads. This section provides a ba-

sic overview of these workloads. Later sections will describe modifications to

many of these workloads as part of the evaluation and introduce microbench-

marks specifically targeted to the proposed networking optimization.

3.2.1 Reduce and Allreduce

Reduce and Allreduce are collective operation that use a binary oper-

ation (e.g., SUM, PROD, or MAX) to combine the corresponding elements

in the input buffer of each participating process. For Reduce, the combined

results are stored in a result buffer in the root process’s address space. For

Allreduce, the combined results are stored in the result buffers of all partici-

pating processes. Allreduce was described previously in Figure 1.3, where it

was used to motivate the need for efficient GPU networking.

3.2.2 Accumulate

The Accumulate function is a one-sided operation used to combine

initiator-resident data with target-resident data through a specified operation.

The target data is replaced with the result without any explicit participation

of the target process.

Accumulate operations are preceded by a collective window creation

operation during which the target process makes a portion of its memory space

28

Node 1 (Bottom)

Node 0 (Top)

Halo

Exchange

Figure 3.2: Stencil pattern and halo exchange example.

available to other members in the window for direct updates. Subsequent

accumulate calls to the target are bracketed by synchronization operations

which define access epochs. An initiator process can make multiple accumulate

calls to a target within an epoch. However, the accumulate operations are

considered complete only after the synchronization operation that closes the

epoch.

3.2.3 Jacobi Stencil

Multi-dimensional stencils are an extremely common communication

pattern for multi-GPU application. This dissertation uses the Jacobi relax-

ation problem [55] to represent the iterative stencil model of GPU communica-

tion. Jacobi is a method used to determine solutions of a diagonally dominant

system of linear equations. Figure 3.2 shows the basic pattern of a stencil

computation like Jacobi decomposed over two nodes. Each node has a portion

of the input matrix, which is divided in multiple dimensions (only 1D in the

example) over all participating nodes. On every timestep of the calculation,

29

Table 3.1: Microsoft Cognitive Toolkit networking behavior.

Name Domain % Blocked # Reductions

AlexNet Classification 14% 4672
AN4 LSTM Speech 50% 131192
CIFAR Classification 4% 939820
Large Synth Synthetic 28% 52800
MNIST Conv Text Recognition 12% 900000
MNIST Hidden Text Recognition 29% 900000

each entry in the matrix is updated based on the value of its neighbors. In

the example, every entry is dependent on the values of its four immediate

neighbors. At the end of a timestep, the entries on the edge of the matrix

are exchanged with each nodes’ direct neighbors in a process known as a halo

exchange (in a 2D decomposition, the “ghost” entries at the edge form a halo

around the matrix). This pattern of computation and communication contin-

ues until an iteration bound has been reached, or the residuals from the latest

computation falls below a user-defined threshold.

3.2.4 Machine Learning

Machine learning is an important class of workload that frequently uses

clusters of GPUs to accelerate the training of neural networks. Neural net-

works are typically trained using some form of iterative stochastic gradient

descent (SGD) for a fixed number of training epochs, or until some conver-

gence criterion has been satisfied. In the distributed formulation of SGD,

an Allreduce operation is used to transfer and combine the contents of every

GPUs’ gradient matrix to every other GPU. This gradient Allreduce opera-

30

tion has been shown to be a significant bottleneck in deep learning workloads,

especially those operating in the synchronous training mode. This disserta-

tion uses six machine learning workloads from a variety of application domains

from the Microsoft Cognitive Toolkit [2]. A brief description of the networking

behavior of each workload is presented in Table 3.1. For the data presented in

the table, the workloads are run on a small cluster of 4 nodes each containing

one Nvidia GPU. The networks are trained in a synchronous training mode,

where the computation blocks when performing a gradient Allreduce. The

%Blocked heading refers to total time spent blocked on an Allreduce opera-

tion, and Reductions refers to the total number of reduction calls. This data

illustrates that improving GPU networking performance has the potential to

significantly speed up the application.

Unfortunately, these machine learning workloads are too big to run en-

tirely on the simulator. Therefore, results are projected from simulator statis-

tics combined with real hardware runs using the following methodology. First,

profiling data is collected from the Stampede [95] supercomputer, where GPUs

were used for local Stochastic Gradient Descent, InfiniBand NICs were used

for communication, and the CPUs were used for the computation in the Allre-

duce phase. These results are combined with simulator results for Allreduce

calls of similar size to project the performance improvement of accelerating the

Allreduce function with the various techniques presented in this dissertation.

Since the Microsoft Cognitive Toolkit uses blocking Allreduce calls, it is not

necessary to worry about any communication and computation overlap.

31

Chapter 4

Extended Task Queuing: Active Messages for

Heterogeneous Systems1

Many of the major heterogeneous platform providers are striving to

incorporate accelerators more tightly into a node’s compute ecosystem [73, 45,

80]. Most of the major hardware vendors offer a number of standardized fea-

tures that enable accelerators to participate in computation as peers to the host

CPU. These features typically include user-mode task invocation, shared vir-

tual memory with a well-defined memory consistency model, shared-memory-

based synchronization, and accelerator context switching. Frameworks that

implement the above features at a node level will be referred to as tightly

coupled compute ecosystems.

While node-level, tightly coupled frameworks remove data copies and

heavyweight driver invocations for intra-node accelerators, NICs with Remote

Direct Memory Access (RDMA) offer these same benefits for inter-node data

transfers. RDMA-capable NICs and fabrics [47, 16, 89, 46, 48] move data from

one node to another without involving the target-node CPU by enabling the

1The work discussed in this chapter was previously published at the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis (SC) in November
of 2016 [59]. I am the principle author of this work.

32

target-node NIC to perform DMA directly to and from application memory.

This chapter introduces NIC primitives which combine RDMA with

tightly coupled, user-level task queuing. These primitives enable applications

to efficiently enqueue tasks on any compute device in a distributed-memory

system, without involving the target-node CPU or the operating system on

either the initiator or the target node. This mechanism is called Extended Task

Queuing (XTQ) [59], since it extends the lightweight, user-mode task queuing

in modern shared-memory platforms across distributed memory systems. XTQ

offers a highly efficient active messaging [27] platform for accelerators that

improves upon the state of the art.

Figure 4.1 shows the control path of a point-to-point remote task invo-

cation implemented on three types of systems. In these examples, a CPU on

the initiator node schedules work on a remote accelerator. In a conventional

heterogeneous node, the communication flow is similar to Figure 4.1a. The

initiator CPU uses a high-performance NIC sitting on an I/O bus to transfer

the task and associated data to the target via RDMA. While emerging tech-

nologies such as Nvidia’s GPUDirect RDMA [64] allow for NICs to transfer

data directly to a GPU’s on-board memory, launching a kernel still requires

the intervention of the target CPU’s runtime and kernel driver.

Figure 4.1b shows the same operation implemented on a contemporary,

tightly coupled SoC. The CPU and the accelerator share the same memory,

obviating the need to transfer data from the target’s main memory to the

accelerator’s local device memory. However, the target-side CPU must still

33

Initiator Target

CPU
CacheMemory

NIC Memory

Network

IOCCPU
Cache Memory

NICMemory

GPUIOC GPU

Memory Memory

(a) Conventional heterogeneous systems

NIC

Cache Cache

CPU

Cache

Memory

NIC

CacheCache

CPU

Cache

Memory

Network

Accelerator Accelerator

(b) Tightly coupled heterogeneous systems

Network
CacheCache

CPU

Cache

Memory

Cache Cache

CPU

Cache

Memory

XTQ NIC XTQ NICAccelerator Accelerator

(c) XTQ-enabled, tightly coupled heterogeneous systems

Figure 4.1: Remote task enqueue control path on different heterogeneous,
distributed-memory systems.

service the request from the NIC and explicitly schedule work on its local

accelerator.

XTQ provides a mechanism enabling the direct CPU-to-accelerator

communication presented in Figure 4.1c. This scheme enables tightly inte-

grated accelerators to efficiently and directly communicate with each other

through a customized hardware NIC. The target-side NIC participates in a

tightly coupled queuing model and can directly schedule work to the acceler-

ator, completely eliminating the CPU communication path in Figure 4.1b.

34

Directly interfacing an intra-node tasking framework with inter-node

RDMA through XTQ offers a number of benefits, including:

• A unified active messaging framework for all compute devices

in the system. By leveraging the user-mode task invocation of tightly

coupled systems, it is possible to design an active messaging framework

that uses the same interface to spawn remote tasks on any device (CPU,

GPU, FPGA, Processor-in-Memory (PIM), etc.) in the system. Unified

active messaging offers exciting new acceleration possibilities for future

applications and runtime libraries.

• A reduction in remote accelerator task launch latency. RDMA

provides the means for low-latency, CPU-less data transfer without re-

dundant data copies. Tightly coupled architectures provide the means

for lightweight, direct accelerator-to-accelerator communication within a

shared-memory node. By marrying the two, a target-side NIC can sched-

ule work directly on a local accelerator without critical-path software on

the CPU. Bypassing the CPU decreases accelerator launch latency and

opens up the possibility of fine-grained remote tasking models for accel-

erators.

• Removal of message processing and task launch overheads on

the target CPU. Message progress threads can impose a significant

overhead in distributed systems [40]. This problem is exacerbated when

the progress thread not only has to handle messages, but also construct

35

command packets and schedule work on accelerators. Direct NIC-to-

accelerator task invocation frees the CPU to either perform more useful

computation or to enter a low power state.

This chapter provides an overview of an XTQ-enabled, tightly coupled system

architecture. The exploration of XTQ is organized into the following three

topics:

• The NIC hardware design. Cross-node heterogeneous integration

can be achieved with the addition of a small amount of hardware to an

RDMA-capable NIC.

• Programming via lightweight extensions to an RDMA-capable

host API. The XTQ remote tasking primitive is implemented as a sim-

ple extension to a generic RDMA network programming interface. This

API extension leverages one-sided communication semantics to allow

programmers to schedule active messages on any computing device in

the cluster. It is easy to express XTQ task invocations using only a few

API calls.

• Performance on a number of important primitive operations

and machine learning applications. XTQ can improve GPU-bound

active message performance by 10-15% over non-XTQ enhanced mes-

sages, while eliminating message and task enqueue overheads on the

target-side CPU. Latency decompositions for important steps in the

36

XTQ task flow and performance improvements for microbenchmarks are

shown. XTQ can also enhance important MPI primitives such as Ac-

cumulate, Reduce, and Allreduce operations. XTQ benefits scale as the

number of nodes increases for a fixed problem size. Finally, XTQ can im-

prove performance on distributed deep learning workloads implemented

using the Microsoft Cognitive Toolkit [2].

4.1 Architecture

This section illustrates the main components of the XTQ hardware ar-

chitecture. XTQ introduces one basic primitive to an RDMA-capable NIC:

direct, user-mode task invocation on a remote accelerator. The lightweight

hardware that implements this operation is described in the following para-

graphs. For the purposes of the exploration of XTQ, the descriptions will

refer specifically to a system with tightly coupled CPU and GPU. However,

the same scheme is generalizable to other accelerators in a tightly coupled

system architecture.

4.1.1 Message Format

Figure 4.2 illustrates the main components of a typical XTQ message

along with the AQL-like [45] command packet formats for CPU and GPU

tasks. For GPU tasks, the command packet contains all the information needed

to launch a kernel, such as a pointer to the kernel code object, a pointer to

the kernel arguments, and work-item/work-group sizes. Variable-sized kernel

37

Group Seg Size

Grid Z

Data Payload

Kernel

Arguments

AQL Packet

O
p

ti
o

n
a

l
/

V
a

ri
a

b
le

 L
e

n
g

th

Kernel Object

Grid X

Kernel Argument Address

Grid Y

Reserved

Completion Signal

OR

GPU AQL Packet

WG X WG Y

WG Z

CPU AQL Packet

64 Bits

6
4

 B
y

te
sArgument 2

Return Address

Argument 3

Argument 0

Argument 1

Reserved

Completion Signal

Header ReservedType

XTQ Message

64 Bits

...

Header Dispatch

Reserved

Private Seg Size

Figure 4.2: XTQ message format.

arguments are appended to the message at the end of the command packet.

For CPU tasks, the command packet contains fields such as a function pointer

and embedded scalar arguments.

After the command packet and kernel arguments is a variable-size pay-

load. This payload is generally a task input buffer provided by the initiator,

but there are no specific requirements for its usage. The API and NIC consume

two separate pointers for the command packet/kernel argument combination

and the payload. The NIC performs a gather operation on the two buffers be-

fore transmitting to the target. Gathering the payload and command packet

separately avoids an unnecessary memory copy in the application code.

4.1.2 Remote Task Dispatch

This section illustrates the steps involved for a CPU to schedule a unit

of work on a remote GPU. The first step in a remote task invocation is for

38

CPUAccelerator

Tightly Coupled Devices

XTQ NIC

Doorbell

2

1

3

Data

Command Queue

Rewrite

54

Virtual Memory

Figure 4.3: Target side steps in XtqPut operation.

the initiator’s CPU to enqueue one or more remote XtqPut operations on the

NIC’s command queue. The NIC’s software interface is provided pointers to

two distinct memory buffers: one for the command packet and kernel/function

arguments and one for the optional data payload. The host library notifies

the NIC of the local memory buffers through a shared command queue and

doorbell mechanism. The NIC then performs a local gather operation and

transfers data over the network.

Figure 4.3 illustrates the steps involved in queuing a task on the target

GPU from the NIC. First, the target NIC receives the XTQ message from

the network. The payload portion of the message is streamed directly into

the receive buffer in main memory 1 . The NIC also extracts the command

packet from the message and performs the rewriting services described in Sec-

tion 4.1.3. Before enqueuing the packet, the NIC first accesses the command

39

queue descriptor. If the queue is full, then the NIC triggers the flow control

mechanism discussed later. Otherwise, the rewritten command packet is en-

queued to the target GPU’s command queue 2 . After the payload write and

command enqueue is completed, the NIC writes the command queue index to

the GPU’s memory-mapped doorbell register 3 . In the presented configura-

tion, the GPU contains a Command Processor (CP), which is responsible for

reading packets from the command queue when the doorbell is updated with

the newest write index. The CP proceeds to dequeue the packet from its com-

mand queue 4 , decodes the launch parameters, and schedules the work on the

GPU’s compute threads. The GPU threads then perform global load and store

operations to access the kernel arguments and payload data 5 . Optionally, the

GPU can notify the local CPU of kernel completion using a shared-memory

signal (not shown).

It is important to note that all of the node-local operations take place

in a unified virtual memory environment. The pointer addresses used for the

command queue and data buffer are virtual addresses. In this scheme it is

assumed that both the NIC and GPU have access to an IOMMU as described

in Section 2.2.4.

Security and process isolation are critical concerns for distributed, multi-

process workloads. For the XTQ extensions, the security concerns are handled

by the underlying transport layer. As an example, the Portals 4 network pro-

gramming API provides clear semantics for isolation of its own per-process

data structures. To the first order, an XTQ extension to the Portals 4 frame-

40

work would inherit these same security mechanisms to protect its task queues

and other auxiliary data structures. A more thorough treatment of the impact

of a system like XTQ on the security model of the cluster is left as future work.

A similar argument exists for flow control. XTQ utilizes shared-memory

queues as the interface between the NIC and the GPU, which can become full.

XTQ can utilize any existing hardware transport-level flow-control mechanism.

In the continuing example with Portals 4, the philosophy is to provide build-

ing blocks for a higher software layer to implement arbitrarily sophisticated

policies. Portals 4 can identify when target-side resources are full and gener-

ate events to notify the initiator or target that a message was not successfully

delivered. The same monitoring and messaging facilities are used for the XTQ

extension to Portals 4.

4.1.3 Rewrite Semantics

One issue with remote task invocation is that the initiator is unaware

of the addresses of important resources which are dynamically allocated by the

target. Even if all machines have an identical operating system and execute

the exact same code, security techniques such as Address Space Layout Ran-

domization (ASLR) [84] can provide different virtual addresses for both static

and dynamically allocated variables on different machines. Some examples

are target-resident kernel input/output buffers, completion signals, and the

GPU’s command queue. One simple way to solve this issue is to broadcast the

virtual addresses of all data needed for task execution. However, it is costly

41

for initiators to keep track of resource descriptors for thousands of possible

target nodes; this scenario is particularly germane in scenarios when resources

are frequently allocated and deallocated during program execution.

To solve this problem, XTQ draws inspiration from CPU-side active

messaging frameworks such as GASNet [17]. In GASNet, the address of re-

quest handlers may be at different address on each node, however, all nodes

have the same number of handlers registered in the exact same order. There-

fore, active messages can refer to a particular handler using an index, and the

implementation at the target simply needs to use this index to offset into a

table of registered handlers. XTQ takes this a step further and leverages co-

ordinated indices to refer to all target-resident data. The initiator populates

the command packet with these indices, and the target performs a translation

from an index to the correct target-local virtual address. Therefore, the ini-

tiator does not need to store any target address information, and the target

only needs to keep index translations for its own resident data. Since one of

the design goals is to avoid invoking the CPU on tasks that are not specifically

destined for it, the XTQ framework incorporates the logic to substitute vir-

tual addresses into the target-side NIC. The semantics of this “XTQ rewrite”

operation will be described in detail for both CPU and GPU bound tasks.

The term “rewrite” is used as opposed to the arguably more accurate term

“translation” to avoid confusion with virtual to physical address translations.

42

4.1.3.1 Lookup Tables

The NIC manages a number of per-process lookup tables to hold the

index-to-virtual address rewrites needed for the NIC to enqueue tasks on a

compute device. There are three different types of lookup tables: the Kernel

Lookup Table, Function Lookup Table, and Queue Lookup Table. Every XTQ

packet will perform one lookup in either the Kernel or Function Lookup Table

depending on the type of the packet. Additionally, all messages will trigger a

lookup in the Queue Lookup Table to extract the base pointer of the target

command queue. The entries in the lookup tables are populated by the host

CPU using the XTQ API described in Section 4.2.

One lookup table entry is needed for each function, kernel, and queue

that wishes to participate in XTQ’s direct NIC-to-compute device tasking.

For the applications and microbenchmarks that were studied, 64 kernel and

function registrations were sufficient, producing Kernel and Function Lookup

Tables that are around 4KB per process. For a small number of nodes, these

data structures can be resident on dedicated tables on the NIC. This is the

approach taken by the prototype implementation of XTQ evaluated in Sec-

tion 4.3. For larger numbers of nodes, these tables would need to reside in

system memory. In this case, the NIC can implement an on-chip cache to pro-

vide low-latency access to frequently used table entries. The design of such a

cache structure is strongly dependent on the characteristics of the application

and is left as future work.

43

Global Virtual

Memory

...

Kernel Object Ptr

Kernel Arguments

Ptr

Data Payload

.....

Kernel Arguments

RDMA Header ...

Completion Signal

Ptr

Kernel Object Ptr

Kernel Arguments

Ptr

Data Payload

.....

Kernel Arguments

Arg0

Arg1

Kernel

Image

Target

Side Buffer

Completion Signal

Ptr HSA Signal

Kernel Lookup Table

Kernel Lookup

Table

Base Address

Register

Target PID

Kernel

Index

....

....

Initiator Target

෍�

Figure 4.4: Target-side XTQ rewrite semantics.

4.1.3.2 Rewrite Procedure

Figure 4.4 shows how the NIC selectively replaces certain fields in a

GPU AQL packet. The initiator places a lookup table index in the field re-

served for the kernel object pointer. The target NIC uses this index to offset

into the Kernel Lookup Table to replace the kernel pointer with the correct

value in the target’s virtual address space. The actual kernel arguments are

aligned directly after the command packet in the receive buffer. XTQ replaces

the kernel argument pointer in the command packet with the address at which

the kernel arguments will be written to memory. Finally, the first two kernel

arguments are replaced with a pointer to a pre-registered target side buffer

and the initiator-provided data payload, respectively. A pointer table can

44

be registered instead of a target-side buffer if more registrations are needed.

Kernel Lookup Table entries also contain room for the registration of a target-

resident, shared-memory completion signal. When the GPU finishes execution

of a task, this completion signal is decremented by the CP to let other agents

efficiently wait for the task to complete. XTQ replaces the command packet

completion signal entry with the completion signal registered in the Kernel

Lookup Table if it is valid. The rest of the fields are passed through as they

are received and are assumed to be properly populated by the initiator.

A similar rewrite procedure is performed for CPU tasks. For CPU tasks,

the NIC references the Function Lookup Table instead of the Kernel Lookup

Table. The primary difference is that the first four function arguments are

embedded directly in the AQL packet.

Finally, the NIC must identify in which of many possible user-mode

queues to place the AQL packet. The queue address is extracted with one final

table lookup, using an index embedded in the AQL reserved bits to access the

Queue Lookup Table.

4.2 Programming Model

The XTQ tasking framework defines an API that the host CPU can

use to schedule remote tasks on a target compute device. This API is imple-

mented as an extension to a generic RDMA network programming interface

that supports a remote Put operation. The XTQ-specific extensions can be

broken down into the remote task launch function (XtqPut) and a number of

45

registration functions used to populate the XTQ lookup tables.

4.2.1 XtqPut Function

XTQ contains one remote-tasking operation: XtqPut. The XtqPut op-

eration performs the same one-sided, RDMA data movement operation as

a basic Put operation, with additional semantics for launching tasks on the

target. The exact mechanism for launching tasks is described in detail in

Section 4.1.

4.2.2 Lookup Table Registration

The XTQ lookup tables are populated by the host CPU using a regis-

tration API. The API provides three lookup table registration functions:

• XtqRegisterFunction: Associates a lookup table index with a function

pointer and an optional target resident buffer.

• XtqRegisterKernel: Associates a lookup table index with a kernel pointer,

an optional target resident buffer, and an optional completion signal.

• XtqRegisterQueue: Associates a lookup table index with a command

queue descriptor.

These functions are meant to be invoked using globally known, coordi-

nated indices, as discussed in Section 4.1.3. Such indices are common in SPMD

programming techniques and are already available in distributed, multiprocess

programming frameworks such as MPI.

46

4.2.3 Example Program

To ground the discussion of the API, Figure 4.5 illustrates a small

program written in the SPMD style utilizing the primary components of XTQ.

In this example, the initiator CPU enqueues a task on the target node’s GPU.

The target-side CPU simply waits on a shared-memory signal until the target-

side GPU has completed the task.

Both CPUs begin by initializing the RDMA communication layer and

NIC 1 . On the initiator side, the CPU allocates a payload and creates a

command packet encapsulating the task to execute on the target 2 . In this

example, the coordinated index 42 is used to associate this command with

queue, kernel, and signal registrations at the target. This task is then supplied

to the NIC using the XtqPut operation 3 . An XtqPut triggers the NIC to

send the input data and command packet to the target.

Meanwhile, the target CPU posts the receive buffer using the RDMA

communication layer 4 . Next, it initializes the local accelerator runtime and

creates a kernel, completion signal, and user-mode command queue 5 . The

target then registers the kernel, signal, and queue with the XTQ NIC using

the XtqRegisterKernel and XtqRegisterQueue functions at index 42 6 . These

functions populate the lookup tables used by the target-side NIC. When the

initiator’s RDMA operation arrives at the target, the target NIC recognizes

it as an XTQ-enabled RDMA and uses the Kernel Lookup Table and Queue

Lookup Table to replace components of the packet and select a command

queue. After the RDMA operation is complete, the NIC enqueues the packet

47

int main(int argc , char *argv []) {

// 1 Initialize RDMA comm layer

int rank = RdmaInit ();

int index = 42;

if (rank == INITIATOR) {

// 2 Construct XTQ payload and command

void *payload = malloc(BUFFER_SIZE);

void *cmd = ConstructCmd(CMD_SIZE , 42);

// Post initialization sync with target

ExecutionBarrier ();

// 3 Launch on remote GPU using XTQ

XtqPut(TARGET , cmd , CMD_SIZE ,

payload , BUFFER_SIZE);

} else {

// 4 Post receive buffer

void *recv_buf = malloc(BUFFER_SIZE);

RdmaPostBuffer(recv_buf);

// 5 Initialize HSA CPU Runtime

signal_t signal;

kernel_t kernel;

queue_t queue;

TaskingInit (&signal , &kernel , &queue);

// 6 Register Kernel/Queues

XtqRegisterKernel(signal , kernel , 42);

XtqRegisterQueue(queue , 42);

// Post initialization sync with initiator

ExecutionBarrier ();

// 7 Wait for GPU to complete task

SignalWait(signal);

}

}

Figure 4.5: Pseudocode for XtqPut operation.

48

to the GPU, which begins execution of the kernel. Meanwhile, the target CPU

waits for the operation to complete using a shared-memory signal 7 .

After initialization, an execution barrier is entered between steps 2

and 3 on the initiator and steps 6 and 7 on the target. This barrier blocks

the initiator from sending a command to the target before the target’s lookup

tables have been populated.

In addition to illustrating the XTQ API, this example program drives

home two related contributions of the XTQ framework. First, the NIC deliv-

ers the task descriptor directly to the GPU without host CPU involvement,

minimizing the task launch latency for the GPU. Second, the host CPU does

not have to use any cycles servicing the network request and scheduling the

task on the GPU. In this simple example, the target CPU waits for the GPU

to complete its operation, but in more complex workloads the CPU could be

free to perform meaningful computations.

While this example may seem primitive, it is actually possible to sup-

port many features with a small amount of software support from higher-level

runtime libraries. For example, the target can send the data to another node

for further computation by issuing another XtqPut operation after the shared-

memory signal resolves. Complex, cross-node dependencies and task graphs

can be implemented using shared-memory signals and XTQ.

49

Table 4.1: XTQ simulation configuration.

CPU and Memory Configuration
Type 4-Wide OOO, x86, 8 cores @ 3GHz
I, D-Cache 64KB, 2-way, 2 cycles
L2-Cache 2MB, 8-way, 8 cycles
L3-Cache 16MB, 16-way, 20 cycles
DRAM DDR3, 8 Channels, 800MHz

GPU Configuration
Type AMD GCN3 @1GHz
CU Config 24 CUs with 4 SIMD-16 engines
Wavefronts 40 Waves per SIMD (64 lanes)
V-Cache 32kB, 16-way, 12 cycles, per CU
K-Cache 32kB, 8-way, 12 cycles, per 4 CUs
I-Cache 64kB, 8-way, 12 cycles, per 4 CUs
L2-Cache 1MB, 16-way, 8 banks, 100 cycles

Network Configuration
Switch Latency 100ns
Link Bandwidth 100Gbps
Topology Star (single switch)

4.3 Evaluation

XTQ provides new opportunities to re-evaluate design decisions in ex-

isting applications and to redesign communication in emerging applications.

This section evaluates the XTQ tasking model on microbenchmarks designed

to expose latencies, primitives that are intrinsic to many MPI programs, and

the Microsoft Cognitive Toolkit machine learning framework.

4.3.1 Experimental Setup

The baseline simulation infrastructure was previously described in Sec-

tion 3.1. Table 4.1 shows the specific configuration for the major components

50

of the infrastructure.

The simulation environment models forward-looking GPU launch la-

tencies. Once the CP has been notified of an available command packet using

its doorbell, it performs a read of the command packet and then immediately

schedules the kernel when a compute unit becomes available. This limit repre-

sents the conceptual overhead of launching a kernel assuming that real-world

launch overheads will trend towards this limit as tightly coupled frameworks

continue to integrate GPUs more closely with CPUs. Slower launch latencies

will negatively impact end-to-end speedup from XTQ since the launch latency

itself will dominate total runtime. XTQ’s reduction in latency would remain

constant, but would contribute less to total performance.

These experiments compare three different remote tasking interfaces

that will be referred to as CPU, HSA, and XTQ. These configurations are

defined as follows:

• CPU: Remote tasking is accomplished by using two-sided send/receive

pairs through user-space RDMA. These results use the application thread

for message progress and active message execution unless otherwise in-

dicated. The CPU baseline is representative of modern CPU-only active

messaging schemes such as those found in the GASNet [17] runtime. The

CPU configuration is included to separate the baseline benefits of GPU

acceleration from those of XTQ, and also to identify problem sizes that

are too small for GPU acceleration.

51

• HSA: HSA also uses two-sided send/receive pairs over RDMA, but

launches the active message on the GPU after the CPU thread has re-

ceived the data. The CPU communicates to the GPU through user-mode

command queues. The HSA configuration represents user-space tasking

on a tightly-coupled architecture without XTQ.

• XTQ: XTQ uses one-sided XtqPuts through user-space RDMA to re-

motely enqueue active messages on the target’s GPU. The NIC places

AQL packets directly into the GPU’s command queue for execution.

4.3.2 Latency Analysis

To precisely quantify the benefits of XTQ in the model, a microbench-

mark very similar to the API code example presented in Figure 4.5 is analyzed.

In this benchmark, an initiator node sends a variable sized payload to the tar-

get, which simply performs a memcpy operation as the active message. This

example seeks to illustrate the overheads involved and is not so much interested

in the computational aspect of the active message at the target.

Figure 4.6 shows a time breakdown of CPU, XTQ, and HSA remote

task spawn for a small 64B payload and a 4KB payload. As is expected, a

CPU active message is still significantly faster than either GPU implementa-

tion, since it incurs no launch overheads. The small 64B payload over XTQ

takes approximately 1.35µs to complete a remote task, while the same payload

over HSA takes approximately 1.7µs. In XTQ, the data transfer phases from

initiator to target take slightly longer than the HSA transfers. XTQ’s usage

52

0.31

0.31

0.31

0.31

0.31

0.31

0.16

0.11

0.11

0.24

0.22

0.22

0.31

0.30

0.31

0.44

0.43

0.42

0.09

0.06 0.07

0.15

0.14

0.14

0.25

0.61

0.28

0.66

0.23

0.23

0.59

0.55

0.07

0.080.21

0.06

0.070.65

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Time (µs)

CPU PtlPut NIC Initiator Put Network NIC Target Put

GPU Launch GPU Kernel Execution CPU Completion

XTQ

4KB

64B HSA

CPU

XTQ

HSA

CPU

19%

15%

Figure 4.6: Time breakdown of remote GPU kernel launch.

of 64B HSA-like packet format slightly increases the payload size over an opti-

mized Portals 4 implementation. However, the performance penalty incurred

from transferring the command structure is dwarfed by the benefits in task

launch latency. XTQ saves approximately 350ns over HSA during the task

launch phase, since the NIC can directly schedule work on the GPU’s com-

mand queues, while HSA requires the CPU to process an RDMA event, create

the GPU task descriptor, and place it in the GPU’s command queue. 4kB

payloads exhibit similar savings during task enqueue, although the speedup is

proportionally less due to the increase in data transfer and kernel execution

time.

4.3.3 MPI Integration

The Message Passing Interface (MPI) [68] is the de facto communica-

tion library for distributed-memory HPC applications. Several MPI functions,

53

such as one-sided Accumulate operations and Reduce/Allreduce collectives,

have a strong computational component that can be parallelized. Using XTQ

to offload this computation to the GPU can lead to improved performance

and reduced CPU overheads. By freeing the CPU to do independent work,

XTQ enables non-blocking variants to achieve substantial computation overlap

between the primary application thread and the accelerator.

One-sided and collective frameworks of the Open MPI [31] implemen-

tation of the MPI-3.0 specification are extended to incorporate XTQ-based

Accumulates and Reductions. This implementation enables library users to

reap the benefits of XTQ acceleration without altering any code.

4.3.3.1 One-Sided Accumulates

The baseline CPU Accumulate implementation for Portals 4 in Open-

MPI is not a true one-sided communication model: it is layered over two-sided,

send-receive calls. The HSA-based implementation is similar, except for the

fact that the MPI library at the target enqueues the operation on a local GPU

instead of performing it directly.

XTQ-based Accumulates, however, are completely one-sided, relieving

the target-side MPI process from receiving data and executing the operation.

On receipt of data from the initiator, the target-side NIC enqueues the ap-

propriate command directly on the GPU’s command queue. When execution

completes, the GPU updates the target-side Accumulate buffer with the result

and an internal progress thread sends an acknowledgement to the initiator.

54

10000 Accumulate Barrier
MPI Other Application

(a) Runtime distribution.

1

10

100

1000

10000

100000

1 100 10000

F
re

q
u
en

c
y

Size (B)

(b) Accumulate data size distribution.

Figure 4.7: NWChem tce ozone Accumulate statistics.

Accumulate operations are used extensively in the NWChem [99] com-

putational chemistry package through the ARMCI/MPI3 library [70]. As an

example, the tce ozone workload from the NWChem regression tests spends

over 58% of its time in the MPI library on a 4 node cluster, measured on

real server-class hardware. Figure 4.7a shows the percentage of time spent

performing various MPI functions on a single rank. The chart shows that

the 43% of its total execution time performing Accumulate-related operations.

Figure 4.7b shows a histogram of the payload size and number of Accumulates

that occur during tce ozone. The reader will observe a large concentration

of small-to-medium sized Accumulates, which are ideal for XTQ lightweight

messaging acceleration. While an actual simulation of NWChem on the model

described in Section 3.1 was not possible due to the size of the workload, the

profiling data points towards the fact that NWChem will realize measurable

benefits from XTQ-based GPU acceleration.

55

4.3.3.2 Reduce and Allreduce

The implementation of both reductions using XTQ is built on the

LibNBC library [41]. LibNBC was designed to support non-blocking collec-

tives on generic architectures. In doing so, it creates a schedule: a directive

to execute a set of operations. The schedule is modified to layer reductions

on XtqPuts instead of two-sided, send-receive operations. An inherent prob-

lem with implementing reductions with active messages is that the target-side

resources must be allocated before an active message can be received at the

target. To address this problem, XTQ encodes an explicit synchronization step

into the schedule by issuing zero-length send/receive pairs between initiators

and targets. This step makes sure that target resources are available before

any XtqPuts are issued.

4.3.3.3 MPI Benchmarks

Figure 4.8 shows performance results for Accumulate, Reduce, and

Allreduce implemented on CPU, HSA, and XTQ as defined in Section 4.3.1.

For sufficiently large benchmarks, GPUs perform much better than CPUs for

these data-parallel operations. For a two-node Accumulate operation (Fig-

ure 4.8a), XTQ performs significantly better than HSA. Interestingly, XTQ

also performs better than CPU even for very small Accumulate sizes. This re-

sult occurs because CPU implements one-sided Accumulates using two-sided

send/recvs, while XTQ leverages one-sided puts directly through Portals 4.

XTQ offers a reasonable performance improvement of around 10-15% for a

56

0.1

1

10
S

p
ee

d
u

p

Data Items (4 Byte Integers)

CPU HSA XTQ

1 16 256 4K 64K 1M

(a) Accumulate acceleration on 2 nodes.

0.1

1

10

1 16 256 4,096 65,536 1,048,576

S
p

ee
d

u
p

Data Items (4 Byte Integers)

CPU HSA XTQ

1 16 256 4K 64K 1M

(b) Reduce acceleration on 2 nodes.

0

500

1000

1500

2000

0 8 16 24 32 40 48 56 64

R
u

n
ti

m
e

(u
s)

CPU HSA XTQ

Nodes

(c) 4MB Allreduce acceleration.

Figure 4.8: Acceleration of MPI Accumulate, Reduce, and Allreduce opera-
tions over XTQ.

57

two-node reduction (Figure 4.8b) over a standard HSA-enabled GPU. For both

operations, the benefits of XTQ over HSA decrease as the payload increases

over approximately 64KB. All of these algorithms, however, are amenable to

software pipelining, which will push the payload size back into a range where

XTQ shows significant benefits, even for very large transfers.

Figure 4.8c illustrates how XTQ performs on Allreduce when strong

scaling up to 64 nodes for a fixed-size global data set of 4MB. Unlike Ac-

cumulate and Reduce, Allreduce requires the result to be transmitted to all

nodes participating in the collective operation. Allreduce is implemented as a

Reduce-Scatter followed by an Allgather, which is an efficient implementation

for vector Allreduce operations [96]. With a fixed-size data set, increasing the

number of nodes decreases the computation per node while increasing the total

number of messages required to complete the reduction. The inflection point

at approximately 12 nodes indicates the point where the overhead of sending

more messages outweighs the benefits of less computation.

The figure illustrates that for small node counts, the size of each round’s

messages are large enough to benefit from GPU acceleration with or without

XTQ. However, for larger node counts, non-XTQ-enabled GPUs are unable to

amortize the high launch latency over the execution of smaller messages. Only

XTQ-enabled GPUs are able to maintain performance improvements over a

CPU reduction up to 64 nodes.

58

0.8

1

1.2

1.4

1.6

1.8

2

AlexNet AN4 LST CIFAR Large

Synth

MNIST

Conv

MNIST

Hidden

P
ro

je
ct

ed
 S

p
ee

d
u
p CPU HSA XTQ

Figure 4.9: XTQ performance on Microsoft Cognitive Toolkit workloads across
8 GPU-enabled nodes.

4.3.4 Machine Learning

This section evaluates XTQ on a distributed deep-learning framework.

The vehicle of exploration for this case study is Microsoft’s Cognitive Toolkit [2].

Figure 4.9 shows the results for machine learning workloads across 8 high per-

formance compute nodes. Utilizing GPUs for Allreduce compute provides a

23% average improvement in runtime over a baseline CPU version. XTQ-

enabled acceleration gives on average an additional 8% improvement over the

HSA baseline, with AN4 LST improving by 15%. CIFAR does not significantly

benefit from either form of GPU Allreduce acceleration, since it is more bound

by the local SGD compute phase than the gradient reduction.

59

4.4 Conclusion

Emerging node-level architectures tightly couple accelerators into host

platforms. These frameworks significantly reduce task launch latency via user-

level task queues and eliminate data copy overhead via shared virtual mem-

ory, paving the path for fine-grained, heterogeneous tasking models in shared-

memory environments. Concurrently, RDMA enables highly efficient user-

level network data transfers. This chapter proposes Extended Task Queuing

(XTQ), a mechanism that combines tightly coupled, user-level task queuing

with RDMA to provide heterogeneous, lightweight tasking across distributed-

memory systems. XTQ is implemented as an extension to a tightly integrated,

RDMA-capable NIC and enables applications to schedule tasks on accelera-

tors and CPUs across nodes. Using XTQ, applications can send messages to

remote accelerators, bypassing the operating system on both nodes and not

involving the target CPU. Bypassing the target-side CPU reduces task launch

latency by 10-15% for small-to-medium sized messages and frees a CPU thread

from message processing to perform more useful computation. XTQ enhances

the use of GPUs to accelerate Reduce, Allreduce, and Accumulate operations

across a variety of payload sizes and on clusters up to 64 nodes. Finally, XTQ

can provide up to 15% performance improvement for emerging deep learning

workloads in the Microsoft’s Cognitive Toolkit.

60

Chapter 5

ComP-Net: Command Processor Networking

for Efficient Intra-kernel Communications on

GPUs2

XTQ offers a highly optimized remote kernel invocation scheme that

does not involve CPU intervention to launch remote kernels at the target.

While this is a useful optimization for traditional kernel-based GPU applica-

tions, it is often more natural to embed network operations within a kernel

using a GPU-side runtime library, similar to how CPU threads can send re-

mote messages by calling into MPI. Indeed, there already exists some research

in this area, as was discussed in Section 2.3.2. The next two chapters in this

dissertation will focus on optimizing intra-kernel networking.

This chapter improves the performance and energy consumption of

intra-kernel networking using a little-known feature of modern GPUs: em-

bedded, programmable microprocessors that are typically referred to as Com-

mand Processors (CPs). These processors exist on the GPU device itself and

are utilized to perform the serial tasks involved with launching and tearing

2The work discussed in this chapter is scheduled to appear in the International Conference
on Parallel Architectures and Compilation Techniques (PACT) in November of 2018 [57]. I
am the principle author of this work.

61

NIC

…Host Queues
Memory

CUs

CPUs

GPU

Host
PCIe

Network Queues

PCIe

Memory

PCIe

(a) Inter-kernel networking through host threads.

L2 Cache
Host Queues

Memory

Network Queues

CUs CPsGPU

PCIe
Host

PCIe

PCIe

NIC

(b) Intra-kernel networking through ComP-Net.

Figure 5.1: Comparison of ComP-Net to traditional intra-kernel networking
schemes.

down a GPU kernel [81, 7]. However, in the presence of intra-kernel net-

working, programmers are encouraged to use larger (fewer) kernels, as they

no longer need to break down kernels across network communication points.

This leaves the Command Processors otherwise idle and available to assist

with GPU networking.

The proposed solution, which is calledCommandProcessorNetworking

(ComP-Net) [57], moves the network service thread from the host CPU over

62

to the GPU-resident CP. Figure 5.1 compares ComP-Net to traditional intra-

kernel networking schemes where the network service threads reside on the

host. In ComP-Net, GPU work-groups submit networking operations to the

CP through the GPU’s shared cache hierarchy on per-work-group command

queues. By hosting the networking runtime on the CP versus the host CPU,

ComP-Net achieve a large reduction in latency for network operations, an in-

crease in scalability in multi-GPU systems, and a significant decrease in energy

consumption associated with the network service thread.

This chapter describes the ComP-Net runtime and programming in-

terface, which was designed to take advantage of the unique capabilities of a

networking CP. It discusses practical challenges related to the relaxed memory

consistency model on the CP and the GPU. It also discusses ways to mitigate

performance problems when sharing data between these two devices by apply-

ing some simple architectural enhancements to the GPU’s L2 cache. Finally, it

performs a detailed evaluation of ComP-Net versus traditional kernel bound-

ary communication and with other intra-kernel networking designs. It is shown

that ComP-Net can improve application performance by 20% and reduce en-

ergy consumption of the network service thread by up to 50% versus other

intra-kernel networking designs on a 2D Jacobi stencil, Allreduce collectives,

and machine learning workloads.

63

5.1 Motivating ComP-Net

This section dives into the limitations of existing intra-kernel network-

ing schemes that use threads on the host CPU and describe how ComP-Net

responds to these limitations.

5.1.1 High Latencies

As previously mentioned, most currently existing intra-kernel network-

ing schemes require communication between CPU network service threads and

a GPU’s work-groups. Unfortunately, in discrete GPU form factors, these two

devices are separated by a high latency I/O interconnect.

Figure 5.2a shows the best-case latencies of intra-kernel communication

between a host CPU and GPU, as observed by work-groups on the GPU.

This experiment uses a simple producer/consumer queue for communication

between the CPU and the GPU. There are two locations in which the queue

can be placed. In the first design, the command queue is placed in the GPU

device memory. The queue is either mapped to the CPU’s address space and

accessed with loads and stores, or it is accessed by a runtime call. Either

way, the performance is quite poor, especially when the CPU is required to

monitor multiple queues at once, since the long latency reads block the CPU

from making forward progress.

In the second design, the command queue is placed in host memory.

The GPU maps the host memory to its address space and does PCIe stores

and atomics to synchronize. While this approach does perform better than

64

0

20

40

60

80

100

1 4 16 64 256 1024 4096

S
er

v
ic

e
T

im
e

(u
s)

Active Workgroups

Host Queues
GPU Queues
Network Latency

(a) Average service time of CPU/GPU queues with the queue placed on the GPU and in
host memory.

0

20

40

60

80

100

16 64 256 1024 4096

S
er

v
ic

e
T

im
e

(u
s)

Active Workgroups

1 Thread
2 Threads
4 Threads
8 Threads
Network Latency

(b) Average service time of CPU/GPU queues with varying number of CPU helper
threads.

Figure 5.2: Latency and scalability issues with intra-kernel networking via
host forwarding

65

the previous design, the access latency is still incredibly high, on the order of

5-80µs, which is 1 or 2 orders of magnitude higher than network latencies of

0.6µs [66]. No matter where the queue is placed, latencies are large.

This dissertation is not the first to note this restriction. Previous

works have illustrated considerable latencies that far surpasses the latency

of a network interface. For example, DCGN [94] quotes latencies of 330µs and

Gravel [82] uses a 125µs timeout to flush pending messages. Even recent works

on powerful modern hardware, such as dCUDA [36], only achieve latencies of

approximately 20µs in the best case.

While high latencies may not matter much when performing bulk syn-

chronous transfers of large data, many network applications, even on a GPU,

require more than just support for streaming transfers. Even applications that

are mostly parallel still have frequent periods of serial behavior that cannot

be easily overlapped. Consider the popular stencil pattern of computation,

which is frequently accelerated on GPUs. In these applications, a reduction is

typically performed after each relaxation phase to determine whether a con-

vergence criterion has been met. After a local reduction across the GPU, each

device contributes a small amount of data, such as the calculation of residuals

or synchronization between time-steps of an iterative calculation. This step of

the algorithm resides directly on the critical path where there is not enough

parallelism for latency hiding to apply. It is precisely these use cases that are

targeted with ComP-Net.

66

5.1.2 Poor Scalability

On GPUs, it is very likely that there will be many work-groups which

need to access the network simultaneously. Figure 5.2b shows an implemen-

tation of intra-kernel networking on the host that sweeps both the number

of work-groups participating in a network operation and the number of host

threads allocated to service these requests. The graph shows that a large

number of host threads are required to maintain reasonable quality of service

for network operations on a single 64 CU GPU. Requiring a large number of

threads to service the GPU limits the scalability of the design. The number of

required threads will only become more of an issue as the number of threads

on a GPU, and the number of GPUs attached to each CPU socket, continues

to increase. Trends in hot application domains such as machine learning indi-

cate that many GPUs per node seems to be the prevailing trend in the highest

performing systems [75].

There are also second-order effects associated with consuming many

cores on the host. For workloads that could benefit from simultaneous CPU

compute, these helper threads draw from resources that are available to the

application. For workloads that only use the GPU, host threads burn unnec-

essary power and prevent the host CPU from entering a deeper sleep state.

5.1.3 The Case for ComP-Net

ComP-Net provides all the benefits of intra-kernel networking while

simultaneously addressing all the above concerns. While using a networking

67

CP, latency is drastically improved. The CP/GPU command queue is placed

directly in GPU memory, which both the CP and GPU can access without

traversing an I/O bus. Additionally, the CP is located behind the GPU’s L2

cache. This means that the CP and the GPU can communicate with a latency

of approximately one hundred GPU cycles if the data is resident in the L2

cache. While this is still quite a bit higher than cache-to-cache communication

between threads on a CPU, it is far less expensive than synchronizing over

PCIe.

Scalability is also elegantly addressed by ComP-Net. As opposed to a

regular CPU, CPs scale naturally with additional GPUs in a system. Since

CPs are a part of the GPU, adding additional GPUs in a system allows you

to gain more CPs for network processing. Additionally, a CP is much smaller

than a core on the host, which results in significant savings in power and

energy. All these effects are shown across several workloads in Section 5.4.

5.2 Programming Model

ComP-Net implements an OpenSHMEM-based API [12] that is exposed

to the GPU programmer through a device side library. The semantics of

OpenSHMEM are very close to the features offered natively by many NIC

hardware vendors. This reduces the required software complexity, which makes

it a natural choice for running on an embedded CP. Each ComP-Net operation

is implemented as a work-group collective; the runtime executes a work-group

barrier after each API call.

68

Work-groups are a natural granularity to perform networking on a

GPU. Any larger, and ComP-Net would need to synchronize across work-

groups, which is expensive and limits the ability for work-groups to overlap.

Any smaller, and the message size would be too small to saturate the network

link [63]. Modern NICs require each message to be ¿= 2KB in order to prop-

erly saturate the link. The common case in GPU programming is that each

work-item in a work-group is responsible for a small 4 or 8 byte element of a

larger array. Assuming a work-group is on average 1K work-items in size, this

means that messages would be on average 4KB-8KB per work-group.

Each ComP-Net API call (put/get/collective/etc.) takes the same ar-

guments as a standard OpenSHMEM implementation (source/destination/length-

/etc.) with the addition of a GPU-only context that provides the information

needed to communicate with the CP. These arguments are placed in a produc-

er/consumer queue and forwarded to the CP, the details of which are described

in Section 5.3.

The practical details of ComP-Net communication are best described

through a small example. Figure 5.3 illustrates a simple ping-pong benchmark

between two GPUs. The example is written using AMD’s Heterogeneous-

compute Interface for Portability (HIP) [8], which has a very similar syntax to

Nvidia’s CUDA [73]. The pong step is omitted since it is similar to ping and

offers no additional information regarding ComP-Net’s API. Figure 5.3a shows

the host-facing API for ComP-Net. First, the host initializes the ComP-Net

runtime and creates a handle for the GPU 1 . This initialization step allocates

69

__host__ void

hostInit ()

{

// 1 Initialize ComP-Net

cpnet_handle_t* cpnet_handle;

cpnet_init (& cpnet_handle , GRID_SZ / WG_SZ);

// 2 Allocate symmetric heap memory

char* buf = cpnet_shmalloc(sizeof(char) *

GRID_SZ / WG_SZ);

// 3 Initiator/target launches kernel

if (cpnet_handle ->pe == INITIATOR) {

hipLaunchKernel(Ping , GRID_SZ ,

GRID_SZ / WG_SZ , 0, 0,

cpnet_handle , buf);

} else { /* Launch target kernel. */ }

}

(a) Initialization and host code.

__device__ void

Ping(cpnet_handle_t *cpnet_handle

char* wg_buffer)

{

// 4 Extract context from global handle

__shared__ cpnet_ctx_t cpnet_ctx;

cpnet_ctx_create(cpnet_handle , cpnet_ctx);

// 5 Each WG pings target

cpnet_shmem_char_p(cpnet_ctx ,

wg_buffer[hipBlockIdx_x],

1, TARGET);

// 6 Each WG waits for pong target

cpnet_shmem_char_wait_until(

wg_buffer[hipBlockIdx_x , 1);

cpnet_ctx_destroy(cpnet_ctx);

}

(b) Device ping to remote GPU using ComP-Net.

Figure 5.3: ComP-Net ping/pong example on host and device.

70

a number of service threads on the GPU’s CPs to handle messages and brings

up a standard OpenSHMEM runtime under the hood. In the proposed design,

Sandia OpenSHMEM (SOS) [90] is used due to its support for contexts and

direct implementation on top of Portals 4, which is the API for the simulation

environment.

Next, the host allocates a network accessible buffer on a symmetric heap

allocated from GPU memory 2 . A symmetric heap is a buffer that resides on

each participating process. Data allocations are a collective operation where

a variable is allocated locally on each symmetric heap at the same location.

Processes can reference memory on another process by simply using the pointer

to the local value along with the PE of the target. In Comp-Net, the symmetric

heap code in SOS is modified to allow allocation of memory on dGPU devices.

The details of this are beyond the scope of this work, but GPU-side symmetric

heap allocators have been explored in the prior art [37]. Finally, a GPU kernel

is launched with the ComP-Net handle and the allocated buffer 3 .

Figure 5.3b illustrates the device side API from ComP-Net. The GPU

first calls an initialization function with the host-provided ComP-Net han-

dle 4 . This API creates a private communication context for each work-group.

This context is allocated in scratch-pad memory and initializes its data from

the global ComP-Net handle. The next two steps perform standard one-sided

network calls to perform a remote put on the target 5 and wait for the corre-

sponding ping 6 . Each work-group performs a separate ping operation on an

independent buffer entry. The details of what happens internally in ComP-Net

71

are described in Section 5.3.

One important detail of ComP-Net is the use of OpenSHMEM contexts.

Contexts were recently added to the specification as a way to wait on (i.e.,

quiet) a subset of the outstanding network operations [12]. While useful for

CPUs, this becomes a critical requirement on GPUs. Work-groups should

not be stalled waiting for unrelated messages, as this significantly reduces the

amount of available communication and computation overlap.

The prototype ComP-Net implementation does contain two program-

ming model limitations. First, the initial implementation only allows for a

single symmetric heap to be bound to a single PE. Therefore, all allocated

ComP-Net symmetric heap memory is always placed on GPU memory. Fi-

nally, ComP-Net does not check for and short-circuit intra-process commu-

nication or inter-process communication where both processes reside on the

same node.

5.3 Architecture

This section discusses the runtime architecture for GPU/CP communi-

cation and synchronization, as well as GPU L2 cache enhancements to reduce

cache thrashing for ComP-Net.

5.3.1 GPU/CP Communication

The CP and the GPU communicate through per-work-group produc-

er/consumer queues. However, building producer/consumer queues between

72

Registers /

Non Coherent Cache

Cache/Memory/GPU Coherence Point

Queue Entry Queue Entry Queue Entry Queue Entry…..
Read Idx Status Status Status Status

CP-Net GPU Context
Write Idx

LDS / Non Coherent Cache

Base Ptr
Read Idx Ptr

Local Read Idx
…..

0 0 1 1

CP-Net GPU Context

Base Ptr

Local Read Idx
…..

Registers /

Non Coherent Cache

4CP-Net GPU Context

Base Ptr

Local Read Idx
…..

…
.

Work-Group Command Processor Thread

1b

1

a

2

3
5

4

1

3
4a

2

4b

!= 0

0

++

!= 1

++

++

<=

Figure 5.4: Illustration of work-groups and CP network service threads com-
municating using ComP-Net.

the GPU and the CP on top of a weakly coherent cache hierarchy is different

than on a fully coherent CPU cache hierarchy. The memory consistency model

of the GPU is described in more detail in Section 2.2.3.

Figure 5.4 describes the details of both the producer and consumer side

of a ComP-Net operation. The producer (a GPU work-group) illustrates steps

with black circles and dotted lines, while the consumer (a CP network service

thread) illustrates steps with white circles and solid lines. In ComP-Net, each

work-group maintains a context that contains the write index, base pointer

of the queue, a pointer to the read index that is shared between the CP and

work-group, and a local copy of the read index. When a GPU work-group

wishes to communicate a network packet with the CP, it first needs to reserve

space in the producer-consumer queue. A single GPU work-item in a work-

group is selected to perform all the serial operations. This does cause some

73

amount of control flow divergence on the GPU, but it is still significantly faster

than ending the kernel. First, the work-group checks if the queue is full by

comparing the local read index to its private write index 1a . If the work-

group thinks that the queue is full using its local read index, it goes ahead

and refreshes its local copy with the version in shared memory and repeats

step 1b . This reduces accesses to global GPU memory in the common case.

Once there is space in the queue, the work-group then fills the slot with all

the information necessary to perform a network operation (operation type,

destination, length, etc.) and enqueues a release marker so that the data is

visible to the CP 2 . If the data to be sent is less than 8 bytes, it is copied

directly into the queue entry to enable the CP to inline the data. Otherwise,

a pointer to the data buffer in GPU memory is copied. Next, the work-group

sets a status bit in the queue entry to inform the CP that the data is ready

for consumption with another device scope write with release marker 3 , and

increments its local write index to complete the operation 4 . On a blocking

call, or a quiet operation for in-flight non-blocking calls, the work-group needs

to check on completion for any outstanding requests. This is done by polling

on the status bits on all requests between the read and the write index 5 .

An acquire marker needs to be inserted after every iteration of the loop to

invalidate the non-coherent L1 cache for the work-group.

On the consumer side, the command processor also keeps a context

for each work-group it is responsible for. The command processor adds its

local read index to the base pointer of the queue and poll on the status bit of

74

the next queue entry 1 . Similarly to the work-group side, the CP needs to

enqueue an acquire marker to invalidate its L1 cache. After the CP detects

that a network packet is available, it reads out the appropriate data and calls

into a standard OpenSHMEM implementation to perform the operation 2 . If

the operation is non-blocking, the CP immediately marks it as complete by

setting the status bit followed by a release operation 3 , and increments the

read pointer in both its local memory 4b and on the host 4a . If the operation

is blocking, the CP translates the operation into a nonblocking OpenSHMEM

call, but does not mark the queue entry as complete. This translation is to

prevent the CP network service thread from blocking, which would leave it

unable to service other requests from other work-groups. After performing a

predefined number of polling rounds through all queues assigned to it, the CP

will quiet the network and mark all blocking queue entries as complete.

5.3.2 CP Atomic Operations

Once the CP networking thread(s) has received a command from the

host, it forwards it to an OpenSHMEM library. Largely, the OpenSHMEM

implementation is unmodified except for the addition of acquire/release mark-

ers to communicate between the CP and the NIC. The procedure is similar

to GPU/CP synchronization, except the operations are performed at system

scope instead of device scope.

However, while operating in a multi-threaded environment with mul-

tiple CPs, the OpenSHMEM library makes heavy use of mutexes to protect

75

shared network data structures across threads. Typically, GPUs resolve de-

vice scope atomics at the point of device-level coherence, which, in the case for

AMD GPUs, is the L2 cache. CPUs work in an entirely different manner. For

the prototype implementation, it is assumed that the CP is running an x86 in-

struction set, which uses Read-Modify-Write (RMW) prefixes on instructions

to take ownership of critical sections. On a standard CPU, this is implemented

by two completely different requests. A CPU maintains atomicity by locking

either the cache line or the entire response path of the coherent L1 cache. On a

non-coherent GPU, this implementation will not provide atomicity. Therefore,

a locking cache state is introduced to the GPU’s L2 cache to support RMW

instructions. All RMW instructions issued from the CP automatically bypass

the L1 cache. The read cycle in the RMW locks the cache line, and the write

instruction unlocks it. This also has the side effect that RMWs are not only

atomic with respect to other CP threads, but also to the GPU itself.

5.3.3 Controlling Cache Thrashing

To reduce latency between the CP and the GPU, ComP-Net should

leverage the shared Last-Level Cache (LLC) between the two components.

Unfortunately, the preliminary design exploration of ComP-Net revealed a

major limitation when hooking a networking CP up to the GPU’s LLC. In

most applications that fully utilize the GPU, the time data is resident in the

LLC is rather low. This is mainly due to the fact that the GPU performs

a significant amount of streaming accesses coupled with the relatively small

76

0

0.2

0.4

0.6

0.8

1

40/0 35/5 30/10 25/15 20/20 25/15 30/10 35/5

L2
 H

it
 R

a
te

 f
o

r
C

P

Networking Wavefronts / Streaming Wavefronts

Baseline LLC Locking

Figure 5.5: L2 hit rate for CP-generated accesses under different GPU load
conditions.

ratio of cache space to the number of GPU compute threads.

This fact has major performance implications on ComP-Net. If enough

wavefronts were engaging in streaming operations, the data shared between

the CP and the GPU through the LLC would be evicted. This forces the

CP and the GPU to communicate through relatively slower GPU memory.

To illustrate this point, Figure 5.5 shows an experiment where the ratio of

networking work-groups to streaming work-groups are sweeped. For the pur-

poses of this experiment, we only use a single CU on the GPU and reduce the

size of the L2 cache accordingly. L2 hit rates are reported only from accesses

that are generated by the CP. The experiment shows that, in the absence of

streaming wavefronts, the L2 hit rate for the CP is relatively high, indicating

that the CP and the GPU are sharing data through the L2 cache successfully.

However, as successively more streaming wavefronts are added, the CP L2 hit

77

rate plummets to almost zero.

Fortunately, the same technique previously used for implementing CPU

mutexes can be extended to prevent eviction of control plane data from the

LLC. Towards this end, the GPU ISA is modified to allow a locked store

operation that puts a cache line in the same lock state as a CPU-side RMW

operation. This data is only unlocked when it has been accessed by the CP.

Since the control plane data is small, and the CP will most likely access the

data quickly, the total number of cache lines and the amount of time that a

cache line is locked is very small (on the order of 800ns - 1µs).

Using this modification, an additional experiment is performed and

labeled ‘LLC Locking’ in the graph. LLC locking significantly improves the hit

rate for networking work-groups that share an L2 cache with streaming work-

groups. However, while the CP hit rate no longer plummets in the presence

of streaming work-groups, it is still reduced by 20% in the worst case from

the baseline with no streaming interference. This reduction is due to the fact

that only data shared by the GPU and the CPU is locked. Data that is used

solely by the CP that does not fit in the CPs relatively small L1 cache is

spilled out to the L2 and affected by thrashing. This indicates that there are

still performance optimizations to be gained by drawing on more sophisticated

cache partitioning or locking schemes from the literature. A deeper exploration

of this interaction is left as future work.

78

Table 5.1: ComP-Net simulation configuration.

CPU and Memory Configuration
Type 8-Wide OOO, x86, 16 cores @ 4GHz
I, D-Cache 64K, 2-way, 2 cycles
L2-Cache 2MB, 8-way, 8 cycles
L3-Cache 16MB, 16-way, 20 cycles
DRAM DDR4, 8 Channels, 2400MHz

GPU Configuration
Type AMD GCN3 @1.5GHz
CU Config 12 CUs with 4 SIMD-16 engines
Wavefronts 40 Waves per SIMD (64 lanes)
V-Cache 32kB, 16-way, 12 cycles, per CU
K-Cache 32kB, 8-way, 12 cycles, per 4 CUs
I-Cache 64kB, 8-way, 12 cycles, per 4 CUs
L2-Cache 1MB, 8 banks, 16-way, 100 cycles

CP Configuration
Type 2-Wide OOO, x86, 2 cores @ 2GHz
D-Cache 32kB, 8-way, 4 cycles
I-Cache 16kB, 8-way, 4 cycles
L2-Cache Shared with GPU

Network Configuration
Switch Latency 100ns
Link Bandwidth 100Gbps
Topology Star (single switch)

5.4 Evaluation

This section evaluates ComP-Net performance and energy consumption

on a number of different workloads.

5.4.1 Experimental Setup

ComP-Net is evaluated using the simulation infrastructure that was

previously described in Section 3.1. Table 5.1 shows the specific configuration

79

for the major components of the infrastructure. The CP itself is configured

according to the specifications listed in Orr et al. [81].

The experiments compare five different implementations of GPU net-

working:

• CPU: Standard node with just a CPU and a NIC. OpenMP is used for

thread-level parallelism, and MPI is used for multi-node communication.

• HDN: Host-Driven Networking represents a traditional GPU network-

ing node that can be bought off the shelf today. Kernels are launched by

the host to perform computation and all networking is routed through

MPI at kernel boundaries. This is representative of industry technologies

such as GPUDirect RDMA [64].

• APU: Intra-kernel networking by placing the network thread on the

CPU on an APU. The GPU can communicate through host memory

and is coherent through a directory-based protocol. This is representa-

tive of the Gravel intra-kernel networking implementation for APUs [82].

Gravel targeted highly irregular applications where each work-item po-

tentially needs to communicate with a different node than its neighbors.

Coalescing was employed across the entire GPU to generate larger mes-

sages to maximize network efficiency. The applications used in this dis-

sertation are more structured, so coalescing is not incorporated into the

APU baseline.

80

• dGPU: Intra-kernel networking by placing the network thread on the

CPU of a host machine in a standard off the shelf dGPU-enabled system.

In this baseline, the GPU producer/consumer queue is placed in GPU

memory. The CPU reads and writes to and from the producer/consumer

queue through a PCIe bus model. This is representative of most previous

works that have attempted intra-kernel networking using helper threads

on the host [51, 94, 36]. The dGPU simulation also serves as the baseline

for all results that report normalized energy consumption or speedups.

• ComP-Net: Intra-kernel networking using ComP-Net. The network

thread is placed on the CP. The CP and GPU communicate through a

shared L2 cache on the GPU.

The APU versus ComP-Net results are surprising enough to address

up front. Although ComP-Net is more energy efficient, for most of the results,

APU and ComP-Net have very similar performance. Since neither communi-

cate over PCIe, this result implies that the gains in synchronizing through the

GPU’s L2 cache (in ComP-Net) are balanced out by the relative decrease in

performance of a CP versus CPU for running the network stack itself.

These observations do not diminish the usefulness of ComP-Net. Al-

though APU is included for completeness, virtually all GPU compute deploy-

ments employ discrete GPUs since APU-based designs do not offer enough

compute units or memory bandwidth for real applications. With this in mind,

81

the correct comparison point for ComP-Net is the other discrete GPU baselines

(either HDN or dGPU).

5.4.2 Microbenchmarks

This section describes the performance of ComP-Net and competing

designs on a number of controlled microbenchmarks. This section only com-

pares the three intra-kernel networking designs (i.e., dGPU, ComP-Net, and

APU).

Figure 5.6a shows the latency of a single work-group performing remote

Get network operations of varying payload sizes across different intra-kernel

networking designs. dGPU based designs incur over 2x the latency of both

ComP-Net and APU designs. As the payload size increases, network band-

width becomes the ultimate determining factor, and the all three intra-kernel

networking designs start to perform similarly.

Figure 5.6b shows the performance of the three intra-kernel networking

schemes when fully loading the GPU with network requests. In this example,

480 simultaneous work-groups of 64 threads each are scheduled, which will

fully saturate the 12 CU system. The experiment then sweeps the number

of network service threads, equally distributing the load across all the net-

work service threads. Both ComP-Net and APU perform better than dGPU.

The dGPU design performs particularly poorly when there are multiple work-

groups since the CPU service threads have to poll several queue descriptors

over PCIe.

82

1
2
4
8

16
32
64

128
R

em
o

te
 G

et
 T

im
e

O
b

se
rv

ed
 f

ro
m

 G
P

U
 (

µ
s)

Network Payload Size (Bytes)

ComP-Net dGPU APU

1B 32B 1KB 32KB 1MB

(a) Sweep of payload size for a single work-group and network service thread.

0

20

40

60

80

100

0 2 4 6 8 10

R
em

o
te

 G
et

 T
im

e

O
b

se
rv

ed
 f

ro
m

 G
P

U
 (

µ
s)

Number of Network Service Threads

ComP-Net dGPU APU

(b) Sweep of threads for 1 Byte transfers with 480 work-groups.

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

E
n

er
g
y
 C

o
n

su
m

ed
 b

y

N
et

w
o

rk
 T

h
re

ad
s

Number of Network Service Threads

ComP-Net dGPU APU

(c) Sweep of CPU energy consumption for 1 Byte transfers with 480 work-groups.

Figure 5.6: Microbenchmarks of ComP-Net vs other intra-kernel networking
baselines.

83

Figure 5.6c shows the energy consumption of the previous multi-threaded

experiment. This study and all subsequent energy studies will focus just on the

energy consumed by the network service thread(s). While the GPU baseline

will consume slightly less energy on APU and ComP-Net due to less time spent

polling on the completion of requests, the major energy reduction is assumed

to come from the vastly different power profiles of a large host CPU versus a

much smaller embedded CP. It is observed that ComP-Net offers significant

energy savings over both APU and dGPU. ComP-Net consumes a third of the

energy of dGPU, and half the energy of APU.

5.4.3 Jacobi 2D Stencil

This section evaluates the performance of ComP-Net over a Jacobi

relaxation problem. In Jacobi, a series of operations are performed on a local

data set, followed by a halo exchange of neighboring data. In the example, a

two-dimensional stencil is split in one dimension over all participating nodes.

For the CPU and HDN version, the algorithm follows three main phases. First,

the next value of the local stencil is calculated (either on the GPU or the host).

Next, the halo region is exchanged with a node’s adjacent peers. Finally,

a residual is reduced over the stencil to determine whether to continue the

relaxation.

The intra-kernel version is implemented similarly, but with an impor-

tant distinction; the host is no longer needed beyond data preparation. Since

network transfers can now be performed from within a kernel, the main re-

84

0.8

0.9

1

1.1

1.2

1.3

16 64 256 1024

R
el

at
iv

e
S

p
ee

d
u

p

Problem Size (N x N Grid)

ComP-Net dGPU APU

HDN CPU

1 2 3

Figure 5.7: Performance of different networking techniques on various stencil
sizes.

laxation loop can be moved onto the GPU. Additionally, work-groups that

are performing a halo exchange on the edge of the stencil can automatically

overlap with work-groups on the interior. Without intra-kernel networking,

this overlap would need to performed using an exterior and interior kernel.

Figure 5.7 illustrates the results of the Jacobi relaxation on the sample

systems. The results are presented as speedup to the dGPU baseline and

represent a single iteration of Jacobi with varying local problem sizes. The

figure shows three regions of interest. In Region 1 , the CPU performs best.

This is because the problem size is much smaller than can be accelerated on

the GPU. In Region 2 GPUs start to become advantageous. In this design,

ComP-Net and APUs perform better than dGPU and HDN by 10-20%. In

Region 3 , all the GPU versions start performing similarly, since the problem

size is large enough where intra-kernel networking latencies are no longer the

85

bottleneck.

5.4.4 Allreduce

Collective operations are critical for a large number of distributed GPU

applications [21, 72]. This section explores the performance of collective opera-

tions by measuring the performance of the Allreduce algorithm on ComP-Net.

The CPU and HDN baselines use the Allreduce implementation pro-

vided by Baidu [11]. This design implements an Allreduce using nonblocking

send and receive operations, with computation performed on the CPU or the

GPU.

The proposed intra-kernel Allreduce design uses a multi-ring algorithm

that maximizes GPU and NIC utilization with fine-grained overlap of commu-

nication and computation. The number of rings is defined by the number of

work-groups participating in the Allreduce on each GPU. In Ringi, WGi on

Kernel/GPU of process P receives data from WGi of process P − 1 and sends

data to WGi of process P + 1. The ideal number of work-groups (rings) per

process is a function of the message-size, chunk size, and bandwidth of the

network.

Figure 5.8 shows a strong-scaling study of a 64MB Allreduce operation

on all the evaluated configurations. Figure 5.8a, illustrates that, for a small

number of nodes, the GPU results all look similar, since the average problem

size per GPU is large and network latencies do not significantly impact per-

formance. As the number of nodes increase and the amount of work per GPU

86

0.6

0.8

1

1.2

1.4

0 4 8 12 16 20 24 28 32 36

R
el

at
iv

e
S

p
ee

d
u

p

Number of GPU Nodes in Reduction

ComP-Net dGPU APU

HDN CPU

(a) Performance w.r.t dGPU.

0

0.2

0.4

0.6

0.8

1

1.2

0 4 8 12 16 20 24 28 32 36

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

Number of GPU Nodes in Reduction

ComP-Net dGPU APU

(b) Energy consumption w.r.t dGPU.

Figure 5.8: Performance and energy of different networking techniques on
Allreduce of different input sizes.

87

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

AlexNet AN4

LSTM

CIFAR MNIST

Conv

MNIST

Hidden

Average

P
ro

je
ct

ed
 S

p
ee

d
u

p
CPU HDN dGPU APU ComP-Net

Figure 5.9: Projected speedups on Microsoft Cognitive Toolkit workloads with
intra-kernel Allreduce on ComP-Net.

decreases, the performance benefits of ComP-Net over competing approaches

(except APU), becomes more pronounced. Eventually, the problem size per

node becomes small enough where the reduction is optimally calculated on the

CPU. Figure 5.8b shows the energy consumption of ComP-Net compared to

other approaches. It is observed that ComP-Net is 50% more energy efficient

than both dGPU and APU baselines.

5.4.5 Machine Learning

Figure 5.9 shows how ComP-Net improves performance of GPU train-

ing of neural networks on a cluster of 8 nodes with a single GPU each. The

difference between the experiments is the device and networking policy (intra-

versus inter-kernel) used for the reduction.

The biggest jump in performance occurs when switching from a CPU-

88

based reduction to a GPU-based one. Further optimizing the Allreduce portion

of the training phase through ComP-Net improves total workload performance

over a dGPU baseline by 5% on average. However, depending on how much

the application is bound by networking, that number can vary from 11% in

AN4 LSTM to 2% in CIFAR.

5.5 Conclusion

This work improves the performance and energy efficiency of intra-

kernel communication using a lesser known feature of modern GPUs: em-

bedded microprocessors that are typically referred to as Command Processors

(CPs). The proposed design, which is calledCommandProcessorNetworking

(ComP-Net), moves the network service thread from the host CPU over to

the GPU-resident CP. This chapter described the ComP-Net programming

model, discussed a detailed mechanism for GPU/CP synchronization, and im-

plemented architectural modifications to reduce cache thrashing between the

GPU and CP. Overall, ComP-Net can improve application performance up to

20% and provide up to 50% energy reduction of networking threads versus

other GPU networking solutions on a Jacobi stencil, Allreduce collective, and

machine learning workloads.

89

Chapter 6

GPU Triggered Networking for Intra-Kernel

Communications3

ComP-Net optimizes the traditional GPU Host Networking approach

for intra-kernel networking by relocating the networking runtime from the host

CPU to the embedded GPU CP. However, the GPU still needs to talk to the

CP thread in the critical path of sending a message. This chapter introduces a

new flavor of intra-kernel GPU communication called GPU Triggered Net-

working (GPU-TN). GPU-TN implements a NIC hardware mechanism by

which the GPU can directly trigger the NIC from within a kernel as in GPU

Native/Host Networking, while still providing high levels of performance with-

out a critical path CP/CPU helper thread. In this approach, the host CPU

is responsible for creating the network command packet on behalf of the GPU

and registering it with the NIC. When the GPU is ready to send a message, it

simply “triggers” the NIC using a memory-mapped store operation. A small

amount of additional hardware in the NIC collects these writes from the GPU

and initiates the pending network operation when a threshold condition has

3The work discussed in this chapter was previously published at the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis (SC) in November
of 2017 [58]. I am the principle author of this work.

90

been met. GPU-TN provides the following advantages over the previously

discussed GPU networking paradigms:

• GPU Triggered: Like GDS and GPU Native Networking approaches,

GPU-TN utilizes the GPU to ring the doorbell of the NIC. Critical path

control flow switches between the CPU and GPU are avoided by allowing

the GPU to initiate network transfers by communicating directly with

the network adapter.

• Intra-Kernel Initiation: GPU-TN allows for GPU kernel code to spec-

ify network initiation points. This programming model enables more

fine-grained and frequent messaging capabilities than kernel-boundary

communication. Additionally, it is much easier to overlap network oper-

ations with local computation since individual work-groups and threads

can send messages independently.

• Reduced GPU Overhead: Since the CPU constructs the network

packet and registers it with the NIC, GPU-TN avoids performance prob-

lems that have impaired some previous GPU Native Networking intra-

kernel solutions. Additionally, GPU-TN eliminates the heavyweight

kernel startup/teardown costs implicit to kernel boundary networking

strategies. This is particularly important with strong scaling, as high

kernel launch overheads will eventually dominate total execution time.

• Reduced CPU Overhead: GPU-TN does not require helper threads

on the CPU to poll for and service GPU message requests. Removing

91

helper threads on the CPU saves power and frees up the CPU to perform

more useful work. These helper threads are common to all GPU Host

Networking programming models.

• Relaxed Synchronization: The GPU can initiate messages that have

not yet been posted by the CPU, providing hardware-level synchroniza-

tion to associate the two operations on the NIC. This allows for overlap-

ping the network post operation from the host with the kernel launch on

the GPU.

GPU-TN is inspired by triggered operations [89], which are used to

optimize sequences of related networking activities in high-performance NICs

and switches. It is also inspired by a CPU-side, multi-threaded message pass-

ing technique called partitioned send [33], which optimizes communication in

systems where each thread contributes a small portion of data to the total

message.

This chapter explores the design and evaluation of GPU-TN. It de-

scribes the division of responsibilities between the host CPU and the GPU,

and the small amount of hardware changes that are needed to implement

triggered operation semantics on the NIC. It also describes how GPU-TN’s

intra-kernel API offers a high degree of flexibility for the kernel programmer.

Finally, it evaluates GPU-TN in the context of a simple microbenchmark,

a Jacobi decomposition representative of many iterative stencils, an impor-

tant MPI collective operation, and emerging machine learning applications.

92

GPU-TN can provide up to 25% performance improvement over GDS-like ap-

proaches, and up to 35% over an optimized HDN solution across varying size

clusters up to 32 nodes.

6.1 Architecture

This section describes the GPU-TN model. It explores how the CPU

and GPU interact during normal operation and how race conditions between

the two are resolved. It also illustrates that GPU-TN can be incorporated into

a high-performance NIC with little hardware complexity.

6.1.1 Overview

GPU-TN uses a hybrid CPU/GPU primitive to enable network com-

munication initiated by a GPU from within a kernel. The main idea is to

support efficient networking from the GPU by offloading the serial communi-

cations runtime and network packet creation to the CPU, while still allowing

the GPU to initiate the network operation directly by performing a simple

memory-mapped write operation of a tag to a particular address. Each trigger

operation is completely independent and can be activated separately, which en-

ables efficient networking from within a kernel. This avoids the high hardware

scheduler cost present in kernel-boundary networking solutions and enables

more fine-grained messaging capabilities.

Figure 6.1 shows the steps involved in performing a GPU-TN enhanced

networking operation on the initiator. The CPU first creates the network

93

Network

Send Buffer

…..

CPU GPU

Trigger List

23

4

NIC

Trigger

Entry

Trigger

Entry
……

1

Figure 6.1: Overview of a GPU triggered operation in GPU-TN.

operation, allocates memory for the message buffer, and sends the command

to the NIC 1 . The CPU is responsible for creating the network operation

using the triggered operations API (see Section 6.2) and registering it with

the NIC. The network runtime library allocates a trigger entry to represent

the state of a triggered operation on the NIC and appends this entry to a list

of all registered entries called the trigger list. A trigger entry is composed of

the following fields:

• Network Operation: Description of the network operation and all the

metadata required to execute that operation, such as a pointer to the

memory resident send buffer, length, target ID, etc.

• Tag: Unique identifier for this trigger entry.

• Counter: A counter collecting the number of writes to the trigger ad-

dress matching this Tag.

94

• Threshold: Constant value representing the number of writes to collect

before initiating the network operation.

Once a trigger entry has been allocated and is visible to the NIC, the GPU

kernel is launched and is provided one or more tags, along with a memory-

mapped address with which to activate trigger operations. This address will

be referred to as the trigger address. During kernel execution, the GPU will

populate the send buffer with data to send to another node 2 . After the

send buffer is populated, the GPU selects the tag corresponding to the pre-

registered message that it currently wishes to send. The GPU then notifies

the NIC that the triggered put operation is ready by performing a posted

write of the tag to the memory-mapped trigger address 3 . This write is

routed to the NIC and placed in a FIFO associated with the trigger address.

The NIC pops entries from the FIFO and searches the trigger list for a tag

match on a trigger entry. When a match is found, the NIC increments the

counter value associated with the matching trigger entry. When the counter

value becomes greater than or equal to the CPU-provided threshold, the NIC

performs the associated network operation 4 . The counter is used to delay

initiation of a message until multiple triggers occur for a given tag and is used

to implement many different granularities of messaging which are discussed in

detail in Section 6.2.

95

6.1.2 Relaxed Synchronization Model

As presented, the current design requires the CPU to first post the

network operation before the GPU activates it. This dependency implies ex-

plicit software-based synchronization between the CPU and GPU, which once

again places the CPU in the critical path of GPU operation. However, a small

modification of the base GPU-TN design can resolve these races by allowing

the CPU and GPU to naturally synchronize with hardware support on the

NIC. The GPU can safely trigger operations that have not yet been registered

with the NIC. This is a useful performance optimization, as the posting of

the network operation can be overlapped with the kernel execution with no

synchronization between the CPU and GPU.

If the NIC receives a write to the trigger address that does not match

any tags, then the NIC allocates a trigger entry for this tag without a cor-

responding network operation or threshold. Subsequent writes to the trigger

address that match this tag will increment the counter as normal. However,

the NIC will not initiate the network operations, as the CPU has not yet

provided the operation or threshold.

When the host CPU registers the triggered network operation, the NIC

checks to see if the tag matches any trigger entries that are already allocated in

the trigger list. If so, the new triggered operation is associated with the existing

counter. If the counter value is already greater than or equal to the threshold,

the network operation is executed immediately. Otherwise, the threshold and

network operation fields of the matching trigger entry are populated and the

96

system works as previously described in Section 6.1.1.

Note that even though the CPU and GPU can register/trigger network

commands to the NIC in any order, they must still agree on the value of

the tags. Otherwise, it is possible for the GPU to trigger the wrong network

operation. This fact can have ramifications when attempting to reuse tag

values. Therefore, explicit synchronization between the CPU and the GPU

should always be used when reusing tags.

6.1.3 NIC Hardware Extensions

GPU-TN requires minimal modifications to a standard RDMA network

interface to support these new semantics. The most straightforward imple-

mentation would implement the trigger entries on the NIC itself using custom

hardware. This is the method evaluated in the prototype implementation of

GPU-TN discussed in Section 6.3. If the trigger list is particularly large, a

design that stores the trigger list in main memory could be preferred. A cache

on the NIC could then be used to save frequently accessed structures. Each

trigger entry would be relatively small (on the order of one or two 64-byte

cache lines) depending on the size of the associated network operation. The

details of such a cache design are largely dependent on the requirements of the

application and are left to future work.

If the NIC is implemented using a programmable microprocessor, the

logic-level changes required for GPU-TN would be simple to add in software. If

the NIC is implemented using custom logic, Figure 6.2 illustrates the primary

97

Trigger Entry

Network

Operation

Counter

Tag

Threshold

==

++

>=

Begin Network

OperationWR En

Tags

Figure 6.2: Tag matching behavior of trigger entries.

modifications. Two comparators and an incrementer can be added specifically

for the purpose of performing triggered operations, or the arithmetic could

utilize shared resources in a more traditional computational pipeline.

As described, trigger entries are logically organized as a linked list.

When a GPU writes to the trigger address, the NIC must be able to efficiently

search the trigger list to see if there is a match. While at least one commer-

cial product has successfully implemented hardware linked lists to satisfy the

Portals 4 specification [18], simpler design alternatives can be considered to

reduce hardware complexity. Additionally, the NIC needs to be able to sup-

port absorbing triggers from potentially thousands of GPU threads in quick

succession, which further motivates the adoption of a lightweight trigger entry

98

lookup.

Limiting the number of active trigger entries would make it possible

to perform a simple associative lookup in hardware to perform tag matching.

Alternatively, a simple hash table structure can be used to avoid extensive list

traversals. The prototype implementation evaluated in Section 6.3 requires no

more than 16 simultaneous active trigger operations, which allows us to adopt

the associative lookup optimization with small hardware overhead.

6.1.4 Dynamic Communication

GPU-TN’s fundamental approach of dictating the communications pat-

tern on the CPU imposes a static networking scheme. Buffer locations, mes-

sage sizes, target nodes, and other important networking metadata are prede-

termined on the CPU and are not dynamically computed on the GPU. While

this scheme is useful for a variety of important networking primitives and ap-

plications (see Section 6.3), it could prove limiting for some more dynamic

applications.

The applications explored in this work are able to adhere to the static

GPU-TN scheduling scheme, which offers the best performance at the cost of

some flexibility. However, the base GPU-TN design can be extended to support

more dynamic communication capabilities at the cost of some additional GPU-

side control flow divergence. Instead of merely writing a tag to the NIC’s

trigger address, the GPU could contribute more fields dynamically, such as

the input buffer pointer or target node identifier. In some sense, GPU-TN

99

...

// 1 Initialize RDMA comm layer

int rank = RdmaInit ();

void * buf = malloc(BUFFER_SIZE);

// 2 Register operations with the NIC

for (int i = 0; i < N_MSGS; i++)

TrigPut(TAG + i, buf , target , thresh , ...);

// 3 Request trigger address from NIC

char *trigAddr = GetTriggerAddr ();

// 4 Launch GPU Kernel

LaunchKern(trigAddr , TAG , N_MSGS , buf , ...);

// 5 Cleanup , do more compute , etc.

...

Figure 6.3: Pseudocode illustrating the responsibilities of the host CPU in
GPU-TN.

currently exists as one extreme point on a continuum of GPU networking

styles that trade off performance and flexibility. A detailed treatment and

analysis of a more dynamic implementation of GPU-TN is left to future work.

6.2 Programming Model

GPU-TN provides a low-level programming interface suitable for run-

time library developers to implement highly optimized networking code. This

section describes the host-facing API for registering triggered operations with

the NIC. It also describes a number of sample GPU kernels illustrating the

flexibility of the GPU-TN programming model.

100

6.2.1 Host API

The CPU-side interface of GPU-TN is responsible for performing the

serial tasks of packet construction and network runtime management. Fig-

ure 6.3 shows the essential host-side steps in GPU-TN. First, the network

communications runtime performs general network initialization and allocates

the send buffer 1 . Then, the host code registers a number of operations

with the NIC, providing a threshold and unique tag-based identifier for every

operation 2 . The NIC runtime library allocates a trigger entry for each oper-

ation. In this example, N MSGS represents the number of messages that the

GPU will trigger during its execution. Next, the memory-mapped triggered

address is extracted from the networking runtime so that it can be provided

to the GPU 3 . This trigger address is then passed as a kernel argument when

the kernel is launched, along with one or more tags 4 . The GPU can then

write one or more tags to the trigger address to increment the counter on the

NIC, which will perform the network operation when this counter reaches the

threshold. Finally, the CPU continues performing other useful computations

and network management tasks 5 .

One important feature of GPU-TN is that steps 4 and 2 do not need

to occur in the order presented in the example. An optimized implementation

can launch the kernel at the beginning of the program and post the triggered

operations to the network at a later time. This allows overlap of the network

operation post and the execution of the kernel. The architecture needed to

support this feature is described in Section 6.1.2.

101

__kernel void

kern1(__global char *trigAddr ,

const int tagBase ,

__global void *buffer)

{

// do work

...

buffer = ...;

atomic_work_item_fence(...);

int id = get_global_id(...);

atomic_store_explicit(

trigAddr , tagBase + id ,

...);

// do additional work

...

...

...

}

(a) Work-item-level networking.

__kernel void

kern2(__global char *trigAddr ,

const int tagBase ,

__global void *buffer)

{

// do work

...

buffer = ...;

work_group_barrier(...);

if (!get_local_id(...)) {

int id = get_group_id(...);

atomic_store_explicit(

trigAddr , tagBase + id ,

...);

}

// do additional work

...

}

(b) Work-group-level networking.

__kernel void

kern3(__global char *trigAddr ,

const int tag ,

__global void *buffer)

{

// do work

...

buffer = ...;

work_group_barrier(...);

if (!get_local_id(...)) {

atomic_store_explicit(

trigAddr , tag , ...);

}

// do additional work

...

}

(c) Kernel-level networking.

Figure 6.4: GPU kernel pseudocode illustrating how to trigger network trans-
fers through GPU-TN for different granularities.

102

6.2.2 Kernel API

Intra-kernel networking offers numerous benefits over traditional kernel-

boundary communication [78, 79, 25, 51, 94, 52, 53]. In GPU-TN, network

operations can be initiated as a store instruction from the perspective of the

GPU; this offers a simple, yet powerful, networking interface for kernel pro-

grammers and runtime developers. This section illustrates how GPU-TN can

be supported at multiple granularities. Figure 6.4 provides example kernels

for each granularity using an OpenCL-like pseudocode syntax.

6.2.2.1 Work-Item/Work-Group-Level

In Figures 6.4a and 6.4b, network operations are triggered at the work-

item/work-group level. Every work-item/work-group is associated with a tag,

and a range of tags corresponding to the total number of work-items/work-

groups are allocated to this kernel by the host and passed in as a kernel

argument. The CPU-provided threshold value for triggering the operation

would, in this case, be 1. The only difference between the work-item and

work-group interface is the presence of a work-group barrier in the latter.

6.2.2.2 Kernel-Level

Figure 6.4c shows an example where network operations are triggered

at the kernel-level. Since there are currently no efficient kernel-level synchro-

nization primitives available in OpenCL, this approach uses the counter in the

trigger entry on the NIC to synchronize. Like the work-group-level example

103

before it, each work-group writes to the trigger address using a leader work-

item after a work-group-level barrier. However, only one tag is provided for the

entire kernel, and the CPU provided threshold is set to the number of work-

groups that need to be executed in this kernel. The NIC-resident counter is

decremented and sends the message when it receives a number of writes from

the GPU equal to the number of work-groups in the kernel.

It is important to note that the above work-group and kernel messaging

approaches could also be accomplished without control flow divergence by hav-

ing every work-item in the work-group/kernel write the same tag and setting

the NIC counter value to the number of work-items in a work-group/kernel.

However, since efficient work-group barriers are available in all GPUs, memory

accesses can be avoided by using the leader work-item approach.

6.2.2.3 Mixed-Granularity

Additional granularities that are combinations of the above can be ex-

pressed by taking advantage of the trigger entry threshold and counter. For

example, it would be simple to send a message for every pair of work-items

by setting the threshold for the operation to 2 instead of 1, and using half

as many tags as the single work-item approach. This offers the programmer

a significant amount of freedom to experiment with different message sizes

and quantities to take advantage of the natural tendencies of the underlying

algorithm, and to experiment with optimal patterns for the hardware.

104

6.2.2.4 Local Completion

Finally, while the host CPU manages the complicated NIC data struc-

tures, it is important to expose an additional hook to the GPU so that it

can check completion of the network operation. For puts, this defines when

it is safe for the GPU to reuse the send buffer. For gets, completion defines

when the data has been received from the target. GPU-TN simply exposes

an additional global variable for each trigger operation that is set by the NIC

on message completion. While this is not shown in the simple examples in

Figure 6.4, the GPU threads can query this location to determine completion

status of individual network operations without the complexity of monitoring

a network completion queue.

6.2.2.5 Target-Side Completion

GPU-TN implements a one-sided communication style described in Sec-

tion 2.1.1, which fits very naturally with the hardware capabilities of the

GPU [37]. Complex tag matching and deep runtime stacks present in two-

sided communication paradigms like MPI introduce software complexity that

is difficult to implement efficiently on GPUs. As with many one-sided com-

munication styles, GPU-TN does not define the target-side semantics for a

remote GPU to receive messages.

If the target needs to know that it has received data in the case of a

put, either the host CPU or the GPU itself can monitor a network completion

queue. Alternatively, many PGAS languages that leverage one-sided commu-

105

nication use polling on variables at the target to build notification mechanisms.

More complex semantics such as execution barriers can be built out of these

primitives.

6.2.2.6 Scoped Memory Model Interactions

GPU-TN is a GPU-centric networking paradigm that must comply with

the GPU’s relaxed memory model as discussed in Section 2.2.3. By default,

languages like OpenCL only provide visibility within a work-group. System

scope accesses from within a GPU kernel are particularly difficult and require

the use of OpenCL 2.0 atomics with the appropriate global memory scope spec-

ifier (in this case, memory scope all svm devices), which may not be supported

on all current GPU devices. This limitation is only a temporary constraint,

as future GPUs are likely to implement more system scope operations.

The examples in Figure 6.4 contain two interesting interactions with

the GPU memory model. The first is the write to the trigAddr variable, which

must be accessed using an explicit atomic store to system scope so that the

GPU caches are bypassed.

The second, and more interesting, interaction concerns the network

buffer itself. This buffer must be globally visible to the NIC before the write

to trigAddr occurs. This is accomplished by setting the scope of the synchro-

nization after the buffer write to the system level with release memory ordering

semantics. Similarly, a system scope acquire operation must be used so that

the GPU sees updates from the NIC itself.

106

Table 6.1: GPU-TN simulation configuration.

CPU and Memory Configuration
Type 8-Wide OOO, x86, 8 cores @ 4Ghz
I,D-Cache 64K, 2-way, 2 cycles
L2-Cache 2MB, 8-way, 8 cycles
L3-Cache 16MB, 16-way, 20 cycles
System Memory DDR4, 8 Channels, 2133MHz

GPU Configuration
Type AMD GCN3 @1.5GHz
CU Config 24 CUs with 4 SIMD-16 engines
V-Cache 32kB, 16-way, 12 cycles, per CU
K-Cache 32kB, 8-way, 12 cycles, per 4 CUs
I-Cache 64kB, 8-way, 12 cycles, per 4 CUs
L2-Cache 1MB, 8 banks, 16-way, 100 cycles
Kernel Latencies 1.5µs launch / 1.5µs teardown

Network Configuration
Latency 100ns
Bandwidth 100Gbps
Topology Star (single switch)

6.3 Evaluation

GPU-TN can offer significant performance improvements in systems

utilizing networks of GPUs. This section evaluates GPU-TN over a latency

microbenchmark, a 2D Jacobi relaxation stencil, an important MPI collective

operation, and deep learning workloads.

6.3.1 Experimental Setup

The baseline simulation infrastructure was previously described in Sec-

tion 3.1. Table 6.1 shows the specific configuration for the major components

of the infrastructure. GPU-TN functions are implemented using an API sim-

107

ilar to existing Portals 4 triggered operations.

The removal of GPU kernel boundary latencies to send network mes-

sages is a major motivating factor behind GPU-TN. The simulation infrastruc-

ture is calibrated to model some of the more optimistic numbers derived from

the experiments in Figure 1.2. The performance results presented for GPU-

TN are based on 3µs of kernel overhead evenly divided between the launch

and teardown phases. For situations where the number of available kernels

exposed to the hardware scheduler at once are small, Figure 1.2 indicates

that the performance improvement of GPU-TN could be even higher than the

results reported in this section.

The experiments compare five different networking strategies that will

be referred to as CPU, HDN, GHN, GDS, and GPU-TN. These configurations

are defined as follows:

• CPU: All computation and communication are performed by a CPU.

The CPU configuration represents a non-GPU-accelerated system and

is included to separate the baseline benefits of GPU acceleration from

those of GPU-TN as well as provide a sanity check for problem sizes

where GPU acceleration no longer makes sense.

• HDN: Host-Driven Networking uses the CPU for all communication and

the GPU for acceleration of workload-specific portions of the computa-

tion. Network messages are performed on GPU kernel boundaries using

108

two sided send/recv semantics. This represents the classic coprocessor

approach to GPU networking found in most clusters.

• GHN: GPU Host networking places the network thread on the CPU of

a host machine. This is representative of most previous works that have

attempted intra-kernel networking using helper threads on the host [51,

94, 36, 82].

• GDS: The GDS baseline approximates the behavior of GPUDirect Async [87]

kernel boundary communication in the simulation environment. GDS

uses the CPU to post a sequence of network operations to the NIC.

After the messages are posted, network initiation points are integrated

into CUDA streams at kernel boundaries. The GPU front-end schedul-

ing unit initiates the network operation by ringing a doorbell on the NIC

after dependent kernels have completed.

• GPU-TN: GPU Triggered Networking uses triggered operations to ef-

ficiently communicate across nodes. Using this scheme, CPUs register

network messages with the NIC. These messages are initiated from within

a GPU kernel using system scope synchronization and memory-mapped

writes when the network data is ready to send.

The results do not explicitly compare against GPU Native Networking

approaches as defined in Section 2.3. However, it is expected that GPU-TN

will offer improved latency and decreased control flow divergence, due to the

109

fact that the serial task of creating a network compatible command packet is

offloaded to the CPU.

The results for GPU Host Networking are based on data from the APU

baseline discussed in Section 5.4. Since both GPU-TN and GHN employ intra-

kernel networking techniques, the performance benefit of GPU-TN is modest.

The main advantage of GPU-TN over GHN approaches is that it can provide

the same or better performance without requiring dedicated polling threads on

the CPU. Polling threads on the CPU have a number of disadvantages, such as

a lack of scalability, higher messaging latency, and the wasteful consumption

of host threads that could be used for additional computation. However, this

benefit is difficult to quantify in the absence of workloads that could leverage

those extra threads.

6.3.2 Latency Analysis

This section analyzes a small microbenchmark to explore where im-

portant latencies reside in the GPU-TN networking flow. In this example, a

kernel executing on an initiator node sends a message to a target node. The

kernel executed by the GPU in this case is a simple vector copy operation of a

single cache line and is not of particular importance. Most of the time in the

GPU kernel itself is spent during kernel initialization and teardown.

Figure 6.5 illustrates a latency decomposition of the microbenchmark

implemented using HDN, GDS, and GPU-TN. Both the initiator and target

are separated and displayed on the same absolute time scale. In HDN, the

110

1.51

1.50

1.50

0.41

0.43

0.49

1.50

1.51

1.49

0.30

0.05

4.21

3.76

2.71

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (µs)

Kernel Launch Kernel Exeuction Kernel Teardown Put Wait

Target

Initiator

Target

Initiator

GPU-TN

GDS

Target

Initiator
HDN

Figure 6.5: GPU-TN vs HDN vs GDS latency decomposition from a small
microbenchmark.

transitions between GPU and CPU control flow are obvious; after a kernel

completes, the CPU initiates a network operation to send data to the target.

The target polls on a memory location to determine when the data has been

sent.

For the GDS baseline, the GPU itself initiates the communication after

the kernel has finished execution. The control flow switch from the GPU back

to the CPU is avoided as well as the critical path construction of the network

packet (in GDS, network operations are posted before-hand by the CPU). GDS

results in around a 10% reduction in latency over the HDN baseline. However,

it should be noted that a system architecture employing a more traditional

discrete GPU setup could see much larger performance improvement from

GDS, since it would avoid a costly critical path control flow switch over the

I/O bus.

111

There are two distinct differences when comparing the GDS implemen-

tation against GPU-TN. The first is that in GPU-TN, network operations

are initiated in the kernel itself, causing the execution of a GPU-TN kernel

to take slightly longer than the corresponding GDS kernel. The second ob-

servation is that the target node receives the network data before the kernel

on the initiator completes. This phenomenon is a direct result of GPU-TN’s

intra-kernel networking. The network message does not need to wait for kernel

termination before sending the message; a kernel can initiate a network op-

eration whenever the data is ready. Overall, the GPU-TN approach achieves

approximately 25% performance improvement over GDS, and approximately

35% improvement over HDN.

6.3.3 Jacobi 2D Stencil

This section evaluates the performance of GPU-TN over a 2D Jacobi

relaxation problem [55] with various input sizes. The Jacobi relaxation is im-

plemented over the 4 example systems by splitting the input in 2D. CPU is a

standard implementation of Jacobi using OpenMP for thread-level parallelism,

while HDN is implemented by exiting the kernel and returning to the host for

MPI send/receives after every round. GHN provides intra-kernel networking

and forwards messages from the GPU to the host using helper threads on

the CPU. GDS and GPU-TN both pre-register the communication, which is

known beforehand since the communication is highly structured. The differ-

ence between GDS and GPU-TN is that GDS stops and starts a kernel every

112

1

1.05

1.1

1.15

1.2

16 64 256 1024

S
p

ee
d

u
p
 V

S
 H

D
N

Local 2D Grid Size (N X N)

CPU
GDS-Sim
GHN
GPU-TN

Figure 6.6: Performance on a single iteration of a 2D Jacobi Relaxation com-
putation over different NxN grid sizes.

time, and GPU-TN uses a single kernel for the entire duration of the program.

Figure 6.6 illustrates the results of the Jacobi relaxation on the sam-

ple systems. The results are presented as speedup to the HDN baseline and

represent a single iteration of Jacobi with varying local problem sizes. When

strong scaling Jacobi, one would move “left” on the graph, while weak scal-

ing would stay at the same point, since the communication patterns do not

significantly change with the introduction of more nodes. Overall, GPU-TN

achieves approximately 6% improvement over GDS, approximately 18% im-

provement over HDN, and 3% speedup over GHN on medium problem sizes.

CPU results are included in the figure to make sure that the range of problem

sizes GPU-TN offers benefits on do not fall outside what is useful to offload

onto a GPU.

113

6.3.4 Allreduce

Collective operations on clusters of GPUs are a critical primitive opera-

tion for a large number of applications, including deep learning, parallel FFT,

molecular dynamics, and graph analytics [72, 21]. This section uses GPU-TN

to implement the Allreduce collective operation in MPI.

GPU-TN is used to accelerate allreduce through the libNBC [41] non-

blocking collectives library. When a collective application is called from the

application, libNBC creates a schedule of subtasks that completely define all

operations and dependencies. In this manner, the collective operation is per-

formed asynchronously by stepping through the schedule of tasks in the MPI

runtime itself. Schedule creation in libNBC maps perfectly to the triggered

operation semantics in GPU-TN. Indeed, collective operations were one of the

original motivations for the introduction of triggered network semantics [98].

The Allreduce algorithm is implemented on CPU, GDS, GPU-TN,

GHN, and HDN systems. The implementations of CPU, GDS, and HDN

are similar to what was described in the Jacobi benchmark evaluation. The

implementation of GHN for Allreduce was described in the evaluation section

for ComP-Net. In GPU-TN, the entire collective operation is performed from

within a single GPU kernel. The GPU kernel polls on a memory location to

know when an adjacent node has contributed data for the reduction. The

GPU work-items then perform the arithmetic operation and triggers the GPU

to send data for the next phase. The implementation triggers the network

operation at the granularity of a work-group; this allows for easy software

114

0.8

1

1.2

1.4

1.6

2 5 8 11 14 17 20 23 26 29 32

S
p

ee
d

u
p

Nodes

HDN GDS-Sim
GHN GPU-TN

Figure 6.7: GPU-TN strong scaling performance evaluation on an 8MB MPI
Allreduce collective operation.

pipelining of the computation and network transfer.

Figure 6.7 shows a strong-scaling study of an 8MB collective opera-

tion on all the evaluated configurations. In this example, the data is single-

precision floating point and the operation is a simple binary addition. Results

are reported as speedup relative to the same operation occurring entirely on

the CPU. For large payload sizes (i.e., small node counts), HDN, GPU-TN,

and GDS provide roughly 1.4x speedup over an optimized CPU Allreduce

operation. In this case, the savings gained from quick network initiation in

GPU-TN are dwarfed by the transfer and computation time. However, as

the payload size of each reduction message decreases (i.e., as node count in-

creases) GPU-TN provides significantly more speed-up over HDN and GDS.

At approximately 24 nodes, HDN Allreduce operations actually become slower

than the equivalent operation performed on a CPU, while GPU-TN continues

115

0.8

1

1.2

1.4

1.6

1.8

2

AlexNet AN4

LSTM

CIFAR Large

Synth

MNIST

Conv

MNIST

Hidden

P
ro

je
ct

ed
 S

p
ee

d
u
p CPU HDN GDS-Sim

GHN GPU-TN

Figure 6.8: GPU-TN performance across six deep learning workloads on a
cluster of 8 nodes.

to provide speedup into 32 nodes and beyond.

6.3.5 Machine Learning

This section demonstrates GPU-TN’s ability to accelerate the perfor-

mance of workloads written in a popular machine learning framework, Mi-

crosoft’s Cognitive Toolkit [2]. Figure 6.8 shows how GPU-TN can be used to

accelerate training of neural networks on the Microsoft Cognitive Toolkit [2]

deep learning platform on a cluster of 8 nodes. Results vary from little im-

provement as in the CIFAR workload up to approximately 20% improvement

over HDN and 5% improvement over GDS in AN4 LSTM. This variability has

to do with the different characteristics of Allreduce operations found in these

workloads. The frequency and size of Allreduce operations are dependent on

the type of neural network being trained, the number of participating nodes,

and the characteristics of the input data set described in Table 3.1. GPU-

116

TN provides the most benefit in scenarios where there are a large number of

small-to-medium-sized collective operations. In all workloads, the performance

difference between GPU-TN and GHN is negligible.

6.4 Conclusion

This chapter introduced GPU Triggered Networking (GPU-TN), a new

networking scheme that can combine the best of traditional host networking

approaches without critical path CPU interactions when initiating network

messages from within a GPU kernel. In GPU-TN, triggered operations are

used to pre-register network operations on the NIC that can be later trig-

gered by the GPU using a simple memory-mapped write operation. GPU-TN

networking decouples the CPU and GPU, while still allowing the CPU to

perform serial networking tasks that are not easily implemented on a GPU.

Additionally, GPU-TN can provide variable granularities of messaging to sup-

port a variety of programming paradigms, while relaxing the kernel-boundary

networking restriction that can impair performance on competing approaches.

GPU-TN was evaluated across a latency microbenchmark, a 2D Jacobi

relaxation stencil, the important Allreduce collective operation, and emerg-

ing machine learning workloads. GPU-TN is capable of achieving up to 25%

performance improvement against a simulated GDS solution, and up to 35%

performance improvement against a traditional Host Driven Networking ap-

proach at scales of up to 32 nodes.

117

Chapter 7

Conclusion

GPUs are frequently deployed to efficiently accelerate a number of im-

portant data-parallel applications from a variety of fields. To solve the largest

problems quickly, researchers and data scientists employ clusters of GPU-

enabled nodes connected over a high-performance computer network. Unfortu-

nately, modern GPUs are forced to channel communication through a driver

stack on the host CPU, despite the availability of host-bypass RDMA net-

works. Often, the intra-node overheads associated with setting up a network

transfer dwarf the overheads associated with the transfer itself. This work

explores mechanisms to improve the performance of GPU networking using

software and hardware techniques innovations to enable GPUs as first-class

networking clients.

7.1 Summary

This dissertation provides three contributions to enhance GPU net-

working. First, Extended Task Queuing (XTQ) [59] provides the ability to

launch remote kernels without intervention of a host CPU at the target. In-

spired by classic work on active messaging [27], XTQ uses NIC architectural

118

modifications to support remote kernel launch without the participation of the

remote CPU. Bypassing the remote CPU significantly reduces remote kernel

launch latencies and allows a more decentralized, cluster-wide work dispatch

system that supports task-based runtime systems.

Next, intra-kernel, GPU-initiated communication is optimized through

the ComP-Net framework [57]. ComP-Net uses a little-known feature of mod-

ern GPUs: embedded, programmable microprocessors that are typically re-

ferred to as Command Processors (CPs). By running the network software

stack on the CP instead of the host CPU, GPU communication latency is

decreased. ComP-Net implements a runtime and programming interface that

allows the GPU compute units to take advantage of the unique capabilities of

a networking CP. Challenges related to the GPU’s relaxed memory model and

L2 cache thrashing are addressed to reduce the latency of network communi-

cation.

Finally, GPU Triggered Networking (GPU-TN) [58] provides an alter-

native intra-kernel networking scheme for a GPU to directly trigger network

operations from within a GPU kernel without the involvement of any CPU on

the critical path. Inspired by Portals 4 triggered operations [89], GPU Trig-

gered Networking implements a NIC hardware mechanism by which the GPU

can directly trigger the network adapter to send messages. In this approach,

the host CPU is responsible for creating the network command packet on be-

half of the GPU and registering it with the NIC. When the GPU is ready to

send a message, it simply “triggers” the NIC using a memory-mapped store

119

Table 7.1: Comparison of prior art and proposed GPU networking techniques.

Networking
Strategy

Kernel
Boundary

GPU
Triggered

GPU Overhead CPU Overhead

Host-Driven Networking
[64, 29, 93]

Yes No - Network Stack

GPU Native Networking
[78, 79, 52, 53, 25]

No Yes Network Stack -

GPU Host Networking
[51, 94, 36, 67, 82]

No No
CPU/GPU Queue

Management
Service Threads,
Network Stack

GPU Direct
Async (GDS) [87]

Yes Yes Network Trigger
Partial Network

Stack

Extended Task
Queuing [59]

Yes
(Optimized)

No -
Network Stack
(Initiator Only)

GPU Triggered
Networking [58]

No Yes Network Trigger
Partial Network

Stack

Command Processor
Networking [57]

No No
CPU/GPU Queue

Management

Service Threads,
Network Stack

(On CP)

operation. A small amount of additional hardware in the NIC collects these

writes from the GPU and initiates the pending network operation when a

threshold condition has been met. These optimizations allow for extremely

fine-grained communications remote communication without ending a kernel.

7.2 Qualitative Comparison of Proposed Techniques

The three techniques described in this work all improve GPU net-

working performance over the prior art. However, each technique approaches

the problem from a different perspective. There are certain applications or

paradigms that may prefer one optimization or programming model over an-

120

other. Table 7.1 provides a qualitative overview of the proposed techniques and

their relationship to each other and the prior art. This rest of this section will

discuss each technique and its relationship to the other proposed techniques

and applications.

Porting applications to the interfaces presented in this dissertation can

vary in difficulty based on the technique chosen and the design of the original

program. XTQ can be more easily applied to existing distributed GPU appli-

cations than ComP-Net or GPU-TN. This observation is due to the fact that

most existing distributed GPU applications assume that network operations

are only available at kernel boundaries. XTQ is a kernel boundary networking

API while ComP-Net and GPU-TN are both implementations of the intra-

kernel networking programming paradigm. However, applications that are

currently designed to run on a single GPU might prefer the API presented by

GPU-TN or ComP-Net. Intra-kernel networking enables existing single node

GPU applications to access the network without breaking the application into

additional kernels.

While the ComP-Net and GPU-TN both offer intra-kernel interfaces,

there are differences in performance and flexibility. The key difference be-

tween ComP-Net and GPU-TN is the flexibility of the programming model.

GPU-TN advocates pre-registration of messages when the communication pat-

tern is static, while ComP-Net uses a CP thread to dynamically create net-

work requests as needed. Although this dissertation does not directly compare

ComP-Net vs. GPU-TN, it is expected that GPU-TN will perform better than

121

ComP-Net at the cost of requiring the communications pattern to be known

beforehand. This is because the cost of triggering a network communication

through GPU-TN is a single write operation from the GPU, while ComP-Net

must forward the networking results to the Command Processor threads.

Finally, while each optimization is presented independently, it is im-

portant to note that the designs are complimentary to each other. There is

no reason that each design could not exist in the same system as the others,

or that the techniques could be used concurrently, depending on the needs of

the application. For example, XTQ could be used to launch a remote kernel

which takes advantage of the intra-kernel networking techniques enabled by

ComP-Net or GPU-TN. GPU-TN itself could be slightly modified so that the

the thread that is responsible for pre-registering the network command oper-

ation resides on the CP instead of the host CPU, resulting in a design that is

a hybrid of ComP-Net and GPU-TN. A complete evaluation of the utility of

hybrid approaches on real applications is left to future work.

7.3 Future Work

There are a number of future research directions that can extend and

enhance the GPU communication techniques described in this dissertation.

This section explores a number of promising next-steps to optimize GPU net-

working and the use of GPU networking primitives in applications.

122

7.3.1 Application Studies

Most GPU applications that currently exist are designed around the

limitations of existing GPU networking solutions. Practically, this means that

multi-node GPU applications must overlap communication and computation

at a very coarse granularity in order to hide the overheads associated with net-

working. While the high performance GPU networking techniques presented

in this dissertation are shown to accelerate a number of MPI primitives, sten-

cils, and machine learning applications, there remains a significant amount of

work in this area.

This is especially true for the two presented intra-kernel networking

techniques, ComP-Net and GPU-TN. Initiating networking from within a ker-

nel is especially useful for applications where the communication patters are

irregular. One particular class of applications that might benefit from intra-

kernel networking are those that form a graph with dependencies across nodes.

One example of an application exhibiting this characteristic is graph

processing algorithms. Most real world graphs are by their very nature highly

irregular. However, they still contain a massive amount of parallelism that

makes some algorithms amenable to GPU acceleration. Many graph pro-

cessing frameworks that are designed to span more than one node use very

lightweight partitioning algorithms, which generates a great deal of commu-

nication [56]. Some work towards supporting graph analytics through GPU

intra-kernel networking has been explored by Orr et al. [82], but there are still

many opportunities to explore further.

123

Another interesting area for optimized GPU networking is sparse tri-

angular solvers that serve as an important component in a large number of

numerical linear algebra routines, such as least squares problems, precondi-

tioned iterative methods, and direct methods. While sparse triangular solvers

still have a large amount of parallelism, they have been traditionally diffi-

cult to accelerate on GPUs due to the presence of many data dependencies.

Most modern implementations on single GPUs involve breaking the problem

down into a large DAG which is then processed by the individual work-groups.

These work-groups activate other work-groups with dependent inputs when

computation is complete [69]. While the DAG is essentially static throughout

execution, spreading the nodes across a number of machines will cause a great

deal of irregular communication that requires an efficient GPU networking

implementation.

Finally, there have been a great deal of advances in training neural

networks at scale since the research conducted in this dissertation. The mod-

els and training methodology employed in this work assumes a data-parallel

distribution and synchronous training using an Allreduce computation. How-

ever, recent algorithmic advances have tried to mitigate the amount of network

communication performed by machine learning at scale [91, 61, 100]. Addition-

ally, researchers have proposed asynchronous training methods that more ag-

gressively overlaps communication and computation, potentially reducing the

amount of time that a node is blocked with gradient updates [26, 20]. In these

algorithms, dedicated parameter servers hold the gradients and asynchronously

124

receive updates from all training nodes using point-to-point communication.

These techniques could potentially reduce the performance improvement of-

fered by the techniques presented in this dissertation, since the algorithms

themselves make networking less of a bottleneck to overall application per-

formance. A complete study of the impact of these modern algorithms on

the GPU networking techniques discussed in this dissertation is left as future

work.

7.3.2 Leveraging Emerging NIC Technologies for GPUs

Recent advances in networking seek to add programmable elements to

high-performance RDMA NICs. These so called “smart NICs” provide addi-

tional intelligence to allow users to perform advanced packet routing [50] [49],

implement programmable message handlers [39], or accelerate collective oper-

ations in the network itself [88] [4] [32]. Even more aggressive designs, such as

Mellanox’s BlueField [65], propose adding a number of full-on processor cores

to the NIC itself.

The work in this dissertation largely assumed traditional high perfor-

mance networks that contain a minimal amount of offload capability. Smarter

networks offer an alternative strategy to perform efficient networking on a

GPU apart from new hardware. As an example, both XTQ and GPU-TN

could both implement their NIC-side logic on a programmable smart NIC

with a proper interface. The CP-side service thread on ComP-Net could also

be located on the NIC itself. A complete treatment of how emerging smart

125

NICs and offloads can be leveraged to accelerate GPU networking is a rich

area for future work.

126

Bibliography

[1] A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D. Kranz, J. Ku-

biatowicz, B.-H. Lim, K. Mackenzie, and D. Yeung, “The MIT Alewife

Machine: Architecture and Performance,” in Intl. Symp. on Computer

Architecture (ISCA), 1995, pp. 2–13.

[2] A. Agarwal, E. Akchurin, C. Basoglu, G. Chen, S. Cyphers, J. Droppo,

A. Eversole, B. Guenter, M. Hillebrand, T. R. Hoens, X. Huang,

Z. Huang, V. Ivanov, A. Kamenev, P. Kranen, O. Kuchaiev,

W. Manousek, A. May, B. Mitra, O. Nano, G. Navarro, A. Orlov,

H. Parthasarathi, B. Peng, M. Radmilac, A. Reznichenko, F. Seide,

M. L. Seltzer, M. Slaney, A. Stolcke, H. Wang, Y. Wang, K. Yao, D. Yu,

Y. Zhang, and G. Zweig, “An Introduction to Computational Networks

and the Computational Network Toolkit,” Microsoft, Technical

Report, 2014. [Online]. Available: https://www.microsoft.com/en-

us/research/wp-content/uploads/2014/08/CNTKBook-20160217.pdf

[3] E. Agostini, D. Rossetti, and S. Potluri, “Offloading Communication

Control Logic in GPU Accelerated Applications,” in Intl. Symp. on

Cluster, Cloud and Grid Computing (CCGrid), 2017.

[4] B. Alverson, E. Froese, L. Kaplan, and D. Roweth. (2015) Cray

127

https://www.microsoft.com/en-us/research/wp-content/uploads/2014/08/CNTKBook-20160217.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2014/08/CNTKBook-20160217.pdf

XC Series Network. [Online]. Available: http://www.cray.com/sites/

default/files/resources/CrayXC30Networking.pdf

[5] AMD. (2015) AMD I/O Virtualization Technology (IOMMU) Spec-

ification. [Online]. Available: http://support.amd.com/TechDocs/

48882 IOMMU.pdf

[6] AMD. (2015) The AMD gem5 APU Simulator: Modeling Heterogeneous

Systems in gem5. [Online]. Available: http://gem5.org/GPU Models

[7] AMD. (2017) Graphics Core Next Architecture, Generation 3 ISA.

[Online]. Available: http://gpuopen.com/compute-product/amd-gcn3-

isa-architecture-manual/

[8] AMD. (2018) HIP: Heterogeneous-Computing Interface for Portability.

[Online]. Available: http://rocm-developer-tools.github.io/HIP/

[9] AMD. (2018) ROCn RDMA. [Online]. Available: https://github.com/

RadeonOpenCompute/ROCnRDMA

[10] B. S. Ang, D. Chiou, D. Rosenband, M. Ehrlich, L. Rudolph, and Arvind,

“StarT-Voyager: A Flexible Platform for Exploring Scalable SMP Is-

sues,” in Intl. Conf. for High Performance Computing, Networking,

Storage and Analysis (SC), 1998, pp. 1–13.

[11] Baidu. (2018) Baidu-Allreduce. [Online]. Available: https:

//github.com/baidu-research/baidu-allreduce

128

http://www.cray.com/sites/default/files/resources/CrayXC30Networking.pdf
http://www.cray.com/sites/default/files/resources/CrayXC30Networking.pdf
http://support.amd.com/TechDocs/48882_IOMMU.pdf
http://support.amd.com/TechDocs/48882_IOMMU.pdf
http://gem5.org/GPU_Models
http://gpuopen.com/compute-product/amd-gcn3-isa-architecture-manual/
http://gpuopen.com/compute-product/amd-gcn3-isa-architecture-manual/
http://rocm-developer-tools.github.io/HIP/
https://github.com/RadeonOpenCompute/ROCnRDMA
https://github.com/RadeonOpenCompute/ROCnRDMA
https://github.com/baidu-research/baidu-allreduce
https://github.com/baidu-research/baidu-allreduce

[12] M. Baker, S. Boehm, A. Bouteiller, B. Chapman, R. Cernohous,

J. Culhane, T. Curtis, J. Dinan, M. Dubman, K. Feind, M. G. Venkata,

M. Grossman, K. Hamidouche, J. Hammond, Y. Itigin, B. Lam,

D. Knaak, J. Kuehn, J. Manser, T. M. Mintz, D. Ozog, N. Park, S. Poole,

W. Poole, S. Pophale, S. Potluri, H. Pritchard, N. Ravichandrasekaran,

M. Raymond, J. Ross, P. Shamis, S. Shende, and L. Smith.

(2018) OpenSHMEM Specification. [Online]. Available: http:

//openshmem.org/site/sites/default/site files/OpenSHMEM-1.4.pdf

[13] M. Ben-Yehuda, J. Mason, L. Van Doorn, and E. Wahlig, “Utilizing

IOMMUs for Virtualization in Linux and Xen,” in In proc. of the Linux

Symp., 2006.

[14] M. Besta and T. Hoefler, “Active Access: A Mechanism for High-Performance

Distributed Data-Centric Computations,” in Intl. Conf. on Supercom-

puting (ICS), 2015, pp. 155–164.

[15] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,

M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5 Simula-

tor,” SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7,

Aug. 2011.

[16] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett,

T. Rimmer, K. D. Underwood, and R. C. Zak, “Intel Omni-Path

129

http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf

Architecture Technology Overview,” 2015. [Online]. Available:

http://www.hoti.org/hoti23/slides/rimmer.pdf

[17] D. Bonachea. (2017) GASNet Specification, v1.8.1. [Online]. Available:

https://gasnet.lbl.gov/dist/docs/gasnet.pdf

[18] Bull. (2017) BXI: Bull eXascale Interconnect. [Online].

Available: https://atos.net/en/products/high-performance-computing-

hpc/bxi-bull-exascale-interconnect

[19] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. von Praun, and V. Sarkar, “X10: An Object-oriented Approach to

Non-uniform Cluster Computing,” in Conf. on Object-oriented Program-

ming, Systems, Languages, and Applications (OOPSLA), 2005, pp. 519–

538.

[20] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project

Adam: Building an Efficient and Scalable Deep Learning Training Sys-

tem,” in Proc. of the 11th USENIX Conf. on Operating Systems Design

and Implementation (OSDI), 2014, pp. 571–582.

[21] C.-H. Chu, K. Hamidouche, A. Venkatesh, A. A. Awan, and D. K. Panda,

“CUDA Kernel Based Collective Reduction Operations on Large-scale

GPU Clusters,” in Intl. Symp. on Cluster, Cloud and Grid Computing

(CCGrid), 2016, pp. 726–735.

130

http://www.hoti.org/hoti23/slides/rimmer.pdf
https://gasnet.lbl.gov/dist/docs/gasnet.pdf
https://atos.net/en/products/high-performance-computing-hpc/bxi-bull-exascale-interconnect
https://atos.net/en/products/high-performance-computing-hpc/bxi-bull-exascale-interconnect

[22] Cray. (2015) The Chapel Parallel Programming Language. [Online].

Available: http://chapel.cray.com/

[23] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. San-

tos, R. Subramonian, and T. von Eicken, “LogP: Towards a Realistic

Model of Parallel Computation,” in Symp. on Principles and Practice

of Parallel Programming (PPOPP), 1993, pp. 1–12.

[24] G. F. Dan Bonachea, “UPC Language Specifications, Version 1.3,”

Lawrence Berkeley National Lab (LBNL), Tech. Rep., 2013. [Online].

Available: http://upc.lbl.gov/publications/upc-spec-1.3.pdf

[25] F. Daoud, A. Watad, and M. Silberstein, “GPUrdma: GPU-side Library

for High Performance Networking from GPUKernels,” in Intl. Workshop

on Runtime and Operating Systems for Supercomputers (ROSS), 2016,

pp. 6:1–6:8.

[26] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.

Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large

Scale Distributed Deep Networks,” in Proc. of the 25th Intl. Conf. on

Neural Information Processing Systems - Volume 1 (NIPS), 2012, pp.

1223–1231.

[27] T. Eicken, D. Culler, S. Goldstein, and K. Schauser, “Active Messages:

A Mechanism for Integrated Communication and Computation,” in Intl.

Symp. on Computer Architecture (ISCA), 1992, pp. 256–266.

131

http://chapel.cray.com/
http://upc.lbl.gov/publications/upc-spec-1.3.pdf

[28] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,

“Dark Silicon and the End of Multicore Scaling,” in Intl. Symp. on

Computer Architecture (ISCA), 2011, pp. 365–376.

[29] Z. Fan, F. Qiu, and A. E. Kaufman, “Zippy: A Framework for Computa-

tion and Visualization on a GPU Cluster,” Computer Graphics Forum,

vol. 27, no. 2, pp. 341–350, 2008.

[30] M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang, Y. Gure-

vich, and W. S. Lee, “The M-Machine Multicomputer,” in Intl. Symp.

on Microarchitecture (MICRO), 1995, pp. 146–156.

[31] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.

Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Cas-

tain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:

Goals, Concept, and Design of a Next Generation MPI Implementa-

tion,” in European Parallel Virtual Machine/Message Passing Interface

Users’ Group Meeting, 2004, pp. 97–104.

[32] R. L. Graham, S. Poole, P. Shamis, G. Bloch, N. Bloch, H. Chapman,

M. Kagan, A. Shahar, I. Rabinovitz, and G. Shainer, “ConnectX-2 In-

finiBand Management Queues: First Investigation of the New Support

for Network Offloaded Collective Operations,” in Intl. Conf. on Cluster,

Cloud and Grid Computing (CCGrid), 2010, pp. 53–62.

[33] R. E. Grant, A. Skjellum, and V. Purushotham, “Lightweight Threading

132

with MPI using Persistent Communications Semantics,” in Workshop on

Exascale MPI (ExaMPI), 2015.

[34] D. Grünewald and C. Simmendinger, “The GASPI API Specification

and its Implementation GPI 2.0,” in Intl. Conf. on Partitioned Global

Address Space Programming Models (PGAS), 2013.

[35] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane, J. Kala-

matianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M. D. Sin-

clair, M. Wyse, J. Yin, X. Zhang, A. Jain, and T. Rogers, “Lost in

Abstraction: Pitfalls of Analyzing GPUs at the Intermediate Language

Level,” in Intl. Symp. on High Performance Computer Architecture

(HPCA), 2018, pp. 608–619.

[36] T. Gysi, J. Bär, and T. Hoefler, “dCUDA: Hardware Supported Overlap

of Computation and Communication,” in Intl. Conf. for High Perfor-

mance Computing, Networking, Storage and Analysis (SC), 2016, pp.

52:1–52:12.

[37] K. Hamidouche, A. Venkatesh, A. A. Awan, H. Subramoni, C.-H. Chu,

and D. K. Panda, “CUDA-Aware OpenSHMEM: Extensions and De-

signs for High Performance OpenSHMEM on GPU Clusters,” Parallel

Computing, vol. 58, pp. 27–36, 2016.

[38] J. Heinlein, K. Gharachorloo, S. Dresser, and A. Gupta, “Integration

of Message Passing and Shared Memory in the Stanford FLASH Mul-

133

tiprocessor,” in Intl. Conf. on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 1994, pp. 38–50.

[39] T. Hoefler, S. Di Girolamo, K. Taranov, R. E. Grant, and R. Brightwell,

“sPIN: High-performance streaming Processing In the Network,” in Intl.

Conf. for High Performance Computing, Networking, Storage and Anal-

ysis (SC), 2017, pp. 59:1–59:16.

[40] T. Hoefler and A. Lumsdaine, “Message Progression in Parallel Comput-

ing - To Thread or not to Thread?” in Intl. Conf. on Cluster Computing

(Cluster), 2008, pp. 213–222.

[41] T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation and Per-

formance Analysis of Non-Blocking Collective Operations for MPI,” in

Proc. of the Intl. Conf. for High Performance Computing, Networking,

Storage and Analysis (SC), 2007, pp. 52:1–52:10.

[42] T. Hoefler, T. Schneider, and A. Lumsdaine, “LogGOPSim: Simulating

Large-Scale Applications in the LogGOPS Model,” in Proc. of the Intl.

Symp. on High Performance Distributed Computing (HPDC), 2010, pp.

597–604.

[43] K. E. Hoff III, J. Keyser, M. Lin, D. Manocha, and T. Culver, “Fast

Computation of Generalized Voronoi Diagrams using Graphics Hard-

ware,” in Intl. Conf. on Computer Graphics and Interactive Techniques

(SIGGRAPH), 1999, pp. 277–286.

134

[44] D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster, M. D.

Hill, S. K. Reinhardt, and D. A. Wood, “Heterogeneous-race-free Mem-

ory Models,” in Intl. Conf. on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2014.

[45] HSA Foundation. (2018) HSA Platform System Architecture

Specification 1.2. [Online]. Available: http://www.hsafoundation.com/

standards/

[46] InfiniBand Trade Association. (2014) RDMA over Converged Ethernet

v2. [Online]. Available: https://cw.infinibandta.org/document/dl/7781

[47] InfiniBand Trade Association. (2016) InfiniBand Architecture

Specification: Release 1.3.1. [Online]. Available: http://www.

infinibandta.org/content/pages.php?pg=technology download

[48] Intel. (2010) Internet Wide Area RDMA Protocol (iWARP). [Online].

Available: http://www.intel.com/content/dam/doc/technology-brief/

iwarp-brief.pdf

[49] Intel. (2018) Intel IXP45X and Intel IXP46X Product Line of Network

Processor. [Online]. Available: https://www.intel.com/content/dam/

www/public/us/en/documents/datasheets/ixp45x-ixp46x-product-line-

network-processors-datasheet.pdf

[50] A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson, and A. Krishna-

murthy, “High Performance Packet Processing with FlexNIC,” in Intl.

135

http://www.hsafoundation.com/standards/
http://www.hsafoundation.com/standards/
https://cw.infinibandta.org/document/dl/7781
http://www.infinibandta.org/content/pages.php?pg=technology_download
http://www.infinibandta.org/content/pages.php?pg=technology_download
http://www.intel.com/content/dam/doc/technology-brief/iwarp-brief.pdf
http://www.intel.com/content/dam/doc/technology-brief/iwarp-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ixp45x-ixp46x-product-line-network-processors-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ixp45x-ixp46x-product-line-network-processors-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/ixp45x-ixp46x-product-line-network-processors-datasheet.pdf

Conf. on Architectural Support for Programming Languages and Oper-

ating Systems (ASPLOS), 2016, pp. 67–81.

[51] S. Kim, S. Huh, Y. Hu, X. Zhang, E. Witchel, A. Wated, and M. Sil-

berstein, “GPUnet: Networking Abstractions for GPU Programs,” in

USENIX Conf. on Operating Systems Design and Implementation (OSDI),

2014, pp. 201–216.

[52] B. Klenk, L. Oden, and H. Fröning, “Analyzing Put/Get APIs for Thread-

Collaborative Processors,” in Intl. Conf. on Parallel Processing (ICPP)

Workshops, 2014, pp. 411–418.

[53] B. Klenk, L. Oden, and H. Fröning, “Analyzing Communication Models

for Distributed Thread-Collaborative Processors in Terms of Energy and

Time,” in Intl. Symp. on Performance Analysis of Systems and Software

(ISPASS), 2015.

[54] S. Kumar, G. Dozsa, G. Almasi, P. Heidelberger, D. Chen, M. E. Gi-

ampapa, M. Blocksome, A. Faraj, J. Parker, J. Ratterman, B. Smith,

and C. J. Archer, “The Deep Computing Messaging Framework: Gener-

alized Scalable Message Passing on the Blue Gene/P Supercomputer,”

in Intl. Conf. on Supercomputing (ICS), 2008, pp. 94–103.

[55] J. Lambers. (2010) Jacobi Methods. [Online]. Available:

http://web.stanford.edu/class/cme335/lecture7.pdf

136

http://web.stanford.edu/class/cme335/lecture7.pdf

[56] M. LeBeane, S. Song, R. Panda, J. H. Ryoo, and L. K. John, “Data Par-

titioning Strategies for Graph Workloads on Heterogeneous Clusters,” in

Intl. Conf. for High Performance Computing, Networking, Storage and

Analysis (SC), 2015, pp. 56:1–56:12.

[57] M. LeBeane, K. Hamidouche, B. Benton, M. Breternitz, and S. K. Rein-

hardt, “ComP-Net: Command Processor Networking for Efficient Intra-

kernel Communications on GPUs,” in Intl. Conf. on Parallel Architec-

tures and Compilation Techniques (PACT), 2018.

[58] M. LeBeane, K. Hamidouche, B. Benton, M. Breternitz, S. K. Reinhardt,

and L. K. John, “GPU Triggered Networking for Intra-Kernel Commu-

nications,” in Proc. of the Intl. Conf. for High Performance Computing,

Networking, Storage and Analysis (SC), 2017, pp. 22:1–22:12.

[59] M. LeBeane, B. Potter, A. Pan, A. Dutu, V. Agarwala, W. Lee, D. Ma-

jeti, B. Ghimire, E. Van Tassell, S. Wasmundt, B. Benton, M. Breternitz,

M. L. Chu, M. Thottethodi, L. K. John, and S. K. Reinhardt, “Extended

Task Queuing: Active Messages for Heterogeneous Systems,” in Proc. of

the Intl. Conf. for High Performance Computing, Networking, Storage

and Analysis (SC), 2016, pp. 80:1–80:12.

[60] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.

Jouppi, “McPAT: An Integrated Power, Area, and Timing Modeling

Framework for Multicore and Manycore Architectures,” in Intl. Symp.

on Microarchitecture (MICRO), 2009, pp. 469–480.

137

[61] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep Gradient

Compression: Reducing the Communication Bandwidth for Distributed

Training,” in Intl. Conf. on Learning Representations (ICLR), 2018.

[62] E. Lindholm, M. J. Kilgard, and H. Moreton, “A User-Programmable

Vertex Engine,” in Intl. Conf. on Computer Graphics and Interactive

Techniques (SIGGRAPH). ACM, 2001, pp. 149–158.

[63] Mellanox. (2015) EDR InfiniBand. [Online]. Available: https://www.

openfabrics.org/images/eventpresos/workshops2015/UGWorkshop/Friday/

friday 01.pdf

[64] Mellanox. (2017) Mellanox OFED GPUDirect RDMA. [Online]. Avail-

able: http://www.mellanox.com/page/products dyn?product family=

116

[65] Mellanox. (2018) BlueField Multicore System on Chip. [On-

line]. Available: http://www.mellanox.com/related-docs/npu-

multicore-processors/PB Bluefield SoC.pdf

[66] Mellanox. (2018) Introducing 200G HDR InfiniBand Solutions. [Online].

Available: http://www.mellanox.com/related-docs/whitepapers/WP

Introducing 200G HDR InfiniBand Solutions.pdf

[67] T. Miyoshi, H. Irie, K. Shima, H. Honda, M. Kondo, and T. Yoshinaga,

“FLAT: A GPU Programming Framework to Provide Embedded MPI,”

138

https://www.openfabrics.org/images/eventpresos/workshops2015/UGWorkshop/Friday/friday_01.pdf
https://www.openfabrics.org/images/eventpresos/workshops2015/UGWorkshop/Friday/friday_01.pdf
https://www.openfabrics.org/images/eventpresos/workshops2015/UGWorkshop/Friday/friday_01.pdf
http://www.mellanox.com/page/products_dyn?product_family=116
http://www.mellanox.com/page/products_dyn?product_family=116
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf
http://www.mellanox.com/related-docs/whitepapers/WP_Introducing_200G_HDR_InfiniBand_Solutions.pdf
http://www.mellanox.com/related-docs/whitepapers/WP_Introducing_200G_HDR_InfiniBand_Solutions.pdf

in Workshop on General Purpose Processing with Graphics Processing

Units (GPGPU), 2012, pp. 20–29.

[68] MPI Forum. (2015) MPI: A Message-Passing Interface Standard.

Ver. 3.1. [Online]. Available: https://www.mpi-forum.org/docs/mpi-

3.1/mpi31-report.pdf

[69] M. Naumov, “Parallel Solution of Sparse Triangular Linear Systems

in the Preconditioned Iterative Methods on the GPU,” Nvidia, Tech.

Rep. [Online]. Available: http://research.nvidia.com/sites/default/

files/publications/nvr-2011-001.pdf

[70] J. Nieplocha and B. Carpenter, “ARMCI: A Portable Remote Memory

Copy Library for Distributed Array Libraries and Compiler Run-time

Systems,” in Intl. Parallel Processing Symp. (IPPS), 1999, pp. 533–

546.

[71] M. D. Noakes, D. A. Wallach, and W. J. Dally, “The J-Machine Multi-

computer,” in Intl. Symp. on Computer Architecture (ISCA), 1993, pp.

224–235.

[72] Nvidia. (2016) Fast Multi-GPU collectives with NCCL. [Online].

Available: https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-

collectives-nccl/

[73] Nvidia. (2018) CUDA Toolkit 9.2. [Online]. Available:

https://developer.nvidia.com/cuda-toolkit

139

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://research.nvidia.com/sites/default/files/publications/nvr-2011-001.pdf
http://research.nvidia.com/sites/default/files/publications/nvr-2011-001.pdf
https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
https://developer.nvidia.com/cuda-toolkit

[74] Nvidia. (2018) GPU-Accelerated Applications. [Online]. Avail-

able: https://www.nvidia.com/content/gpu-applications/PDF/gpu-

applications-catalog.pdf

[75] Nvidia. (2018) Nvidia DGX-2. [Online]. Available: https:

//www.nvidia.com/en-us/data-center/dgx-2/

[76] Nvidia. (2018) Nvidia Tesla v100. [Online]. Available:

https://www.nvidia.com/en-us/data-center/tesla-v100/

[77] Nvidia. (2018) NVlink Fabric. [Online]. Available: https:

//www.nvidia.com/en-us/data-center/nvlink/

[78] L. Oden and H. Fröning, “GGAS: Global GPU Address Spaces for Ef-

ficient Communication in Heterogeneous Clusters,” in Intl. Conf. on

Cluster Computing (CLUSTER), 2013, pp. 1–8.

[79] L. Oden, H. Fröning, and F.-J. Pfreundt, “InfiniBand-Verbs on GPU: A

Case Study of Controlling an InfiniBand Network Device from the GPU,”

in Intl. Conf. on Parallel Distributed Processing Symp. Workshops

(IPDPSW), 2014, pp. 976–983.

[80] OpenCAPI Consortium. (2018) OpenCAPI Specification. [Online].

Available: https://opencapi.org/technical/specifications/

[81] M. S. Orr, B. M. Beckmann, S. K. Reinhardt, and D. A. Wood, “Fine-

grain Task Aggregation and Coordination on GPUs,” in Intl. Symp. on

Computer Architecture (ISCA), 2014, pp. 181–192.

140

https://www.nvidia.com/content/gpu-applications/PDF/gpu-applications-catalog.pdf
https://www.nvidia.com/content/gpu-applications/PDF/gpu-applications-catalog.pdf
https://www.nvidia.com/en-us/data-center/dgx-2/
https://www.nvidia.com/en-us/data-center/dgx-2/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://opencapi.org/technical/specifications/

[82] M. S. Orr, S. Che, B. M. Beckmann, M. Oskin, S. K. Reinhardt, and

D. A. Wood, “Gravel: Fine-Grain GPU-Initiated Network Messages,” in

Proc. of the Intl. Conf. for High Performance Computing, Networking,

Storage and Analysis (SC), 2017, pp. 23:1–23:12.

[83] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.

Lefohn, and T. J. Purcell, “A Survey of General-Purpose Computation

on Graphics Hardware,” in Computer Graphics Forum, vol. 26, no. 1,

2007, pp. 80–113.

[84] PaX Team. (2001) Design of ASLR in PaX. [Online]. Available:

https://pax.grsecurity.net/docs/aslr.txt

[85] S. Potluri, N. Luehr, and N. Sakharnykh. (2016) Simplifying

Multi-GPU Communication with NVSHMEM. [Online]. Available:

http://on-demand-gtc.gputechconf.com/gtc-quicklink/7D7mU

[86] S. Reinhardt, J. Larus, and D. Wood, “Tempest and Typhoon: User-

Level Shared Memory,” in Intl. Symp. on Computer Architecture (ISCA),

1994, pp. 325–336.

[87] D. Rossetti. (2015) GPUDirect Async. [Online]. Available: http://on-

demand.gputechconf.com/gtc/2015/presentation/S5412-Davide-Rossetti.

pdf

[88] D. Roweth and A. Pittman, “Optimized Global Reduction on QsNetII,”

in Symp. on High Performance Interconnects (Hot Interconnects), 2005,

141

https://pax.grsecurity.net/docs/aslr.txt
http://on-demand-gtc.gputechconf.com/gtc-quicklink/7D7mU
http://on-demand.gputechconf.com/gtc/2015/presentation/S5412-Davide-Rossetti.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5412-Davide-Rossetti.pdf
http://on-demand.gputechconf.com/gtc/2015/presentation/S5412-Davide-Rossetti.pdf

pp. 23–28.

[89] Sandia National Laboratories. (2017) The Portals 4.1 Network

Programming Interface. [Online]. Available: http://www.cs.sandia.

gov/Portals/portals41.pdf

[90] Sandia National Laboratories. (2018) Sandia OpenSHMEM. [Online].

Available: https://github.com/Sandia-OpenSHMEM/SOS

[91] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-Bit Stochastic Gradient

Descent and Application to Data-Parallel Distributed Training of Speech

DNNs,” in Annual Conf. of the Intl. Speech Communication Association

(Interspeech), 2014, pp. 1058–1062.

[92] G. Shah and C. Bender, “Performance and Experience with LAPI – A

New High-Performance Communication Library for the IBM RS/6000

SP,” in Proc. of the First Merged Intl. Parallel Processing Symp. (IPPS)

and Symp. on Parallel and Distributed Processing (SPDP), 1998, pp.

260–266.

[93] M. Strengert, C. Müller, C. Dachsbacher, and T. Ertl, “CUDASA: Com-

pute Unified Device and Systems Architecture,” in Procs. of the 8th

Eurographics Conf. on Parallel Graphics and Visualization (EGPGV),

2008, pp. 49–56.

[94] J. A. Stuart and J. D. Owens, “Message Passing on Data-Parallel Archi-

tectures,” in Intl. Symp. on Parallel Distributed Processing (IPDPS),

142

http://www.cs.sandia.gov/Portals/portals41.pdf
http://www.cs.sandia.gov/Portals/portals41.pdf
https://github.com/Sandia-OpenSHMEM/SOS

2009, pp. 1–12.

[95] TACC. (2015) Stampede Supercomputer User Guide. [Online].

Available: https://portal.tacc.utexas.edu/user-guides/stampede

[96] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of Collective

Communication Operations in MPICH,” Intl. Journal of High Perfor-

mance Computing Applications, vol. 19, no. 1, pp. 49–66, 2005.

[97] TOP500.org. (2018) Highlights - June 2018. [Online]. Available:

https://www.top500.org/lists/2018/06/highlights/

[98] K. D. Underwood, J. Coffman, R. Larsen, K. S. Hemmert, B. W. Bar-

rett, R. Brightwell, and M. Levenhagen, “Enabling Flexible Collective

Communication Offload with Triggered Operations,” in Symp. on High

Performance Interconnects (Hot Interconnects), 2011.

[99] M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H. V.

Dam, D. Wang, J. Nieplocha, E. Apra, T. Windus, and W. de Jong,

“NWChem: A Comprehensive and Scalable Open-source Solution for

Large Scale Molecular Simulations,” Computer Physics Communica-

tions, vol. 181, no. 9, pp. 1477–1489, Sep 2010.

[100] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Tern-

Grad: Ternary Gradients to Reduce Communication in Distributed Deep

Learning,” in 31st Annual Conf. on Neural Information Processing Sys-

tems (NIPS), 2017.

143

https://portal.tacc.utexas.edu/user-guides/stampede
https://www.top500.org/lists/2018/06/highlights/

[101] J. J. Willcock, T. Hoefler, N. G. Edmonds, and A. Lumsdaine, “AM++:

A Generalized Active Message Framework,” in Intl. Conf. on Parallel

Architectures and Compilation Techniques (PACT), 2010, pp. 401–410.

[102] S. J. E. Wilton and N. P. Jouppi, “CACTI: An Enhanced Cache Access

and Cycle Time Model,” IEEE Journal of Solid-State Circuits, vol. 31,

no. 5, pp. 677–688, May 1996.

[103] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick, “UPC++: A

PGAS extension for C++,” in Intl. Parallel and Distributed Processing

Symp. (IPDPS), 2014, pp. 1105–1114.

144

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Problem Description
	Contributions
	Thesis Statement
	Organization

	Chapter 2. Background and Related Work
	RDMA Networks
	One-Sided Communication

	GPU Technology
	Architecture
	Programmability
	Memory Consistency Model
	Intra-Node GPU Integration

	Related Work
	Inter-Kernel Networking Optimizations
	Intra-Kernel Networking Optimizations
	Active Messaging and Message Passing Machines

	Chapter 3. Methodology
	Simulation Infrastructure
	Power Modeling

	Workloads
	Reduce and Allreduce
	Accumulate
	Jacobi Stencil
	Machine Learning

	Chapter 4. Extended Task Queuing: Active Messages for Heterogeneous Systems
	Architecture
	Message Format
	Remote Task Dispatch
	Rewrite Semantics

	Programming Model
	XtqPut Function
	Lookup Table Registration
	Example Program

	Evaluation
	Experimental Setup
	Latency Analysis
	MPI Integration
	Machine Learning

	Conclusion

	Chapter 5. ComP-Net: Command Processor Networking for Efficient Intra-kernel Communications on GPUs
	Motivating ComP-Net
	High Latencies
	Poor Scalability
	The Case for ComP-Net

	Programming Model
	Architecture
	GPU/CP Communication
	CP Atomic Operations
	Controlling Cache Thrashing

	Evaluation
	Experimental Setup
	Microbenchmarks
	Jacobi 2D Stencil
	Allreduce
	Machine Learning

	Conclusion

	Chapter 6. GPU Triggered Networking for Intra-Kernel Communications
	Architecture
	Overview
	Relaxed Synchronization Model
	NIC Hardware Extensions
	Dynamic Communication

	Programming Model
	Host API
	Kernel API

	Evaluation
	Experimental Setup
	Latency Analysis
	Jacobi 2D Stencil
	Allreduce
	Machine Learning

	Conclusion

	Chapter 7. Conclusion
	Summary
	Qualitative Comparison of Proposed Techniques
	Future Work
	Application Studies
	Leveraging Emerging NIC Technologies for GPUs

	Bibliography

